Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ILA 2018: Traveling into space – safely, quickly and cost-effectively

10.04.2018

Low Earth orbit increasingly resembles an overcrowded junkyard. Disused satellites, burned-out rocket stages and thousands of pieces of debris produced by collisions – all these things pose a threat to infrastructure in space. Fraunhofer researchers have developed a new radar system and other technologies to give spacecraft better protection against space junk. And that is not all: By virtue of an agile small satellite, the scientists are now also making access to space quicker and more cost-effective.

Scraps of wreckage whizzing around present a serious danger to everything that moves in space. To avoid this debris, it is important to know where it is located.


The small satellite ERNST is roughly the size of a shoe box and carries an infrared camera for Earth observation.

Fraunhofer EMI

“Using the new GESTRA surveillance radar, it is possible to detect objects and debris in low Earth orbit up to 3000 kilometers,” says Helmut Wilden, Team Leader for Multifunctional RF Sensor Technology at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg near Bonn. While GESTRA is able to scan large areas of space around the clock, the radar system TIRA observes individual objects more closely.

“GESTRA monitors the expanses of space to establish whether – and indeed how many – objects there are. TIRA can then produce an image of the individual objects, enabling them to be analyzed in more detail,” explains Jens Fiege, Head of Internal and External Communications at Fraunhofer FHR. Moreover, with its sensitive antennae, TIRA can detect objects from just a few centimeters in size and larger, enabling it to measure their trajectories with high levels of precision.

Vulnerability analyses and smart design

When collisions with debris are unavoidable, robust materials and smart designs help protect satellites against serious damage. The new PIRAT software from the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, in Freiburg calculates whether the satellite design or individual components would withstand a collision. To this end, PIRAT factors in the flight path of the planned mission and the particle impacts to be expected in that region.

Combined with the experimental simulation of collisions, the researchers at Fraunhofer EMI create fact-based vulnerability analyses and protection concepts. “PIRAT makes it possible to determine the failure probability of individual components – even inside the satellite – if a piece of space junk pierces the external wall upon collision and spreads out as a cloud of fragments,” explains Dr. Martin Schimmerohn from Fraunhofer EMI.

“Through the clever placement of components and the adding of thin protective layers, you can find a safe design with minimum impact on the overall system.”

Small satellite with 3D-printed component

Thanks to innovative Fraunhofer technologies, it will not only be safer to travel to space in the future, but faster and more cost-effective too. In the form of ERNST, scientists at Fraunhofer EMI have developed a small satellite that is lightweight, reliable and multifunctional, which will make it possible to slash development costs and time-to-orbit.

“Generally, several small satellites ride piggyback with large launch vehicles – this allows even small groups of researchers with limited financial resources to carry out tests in space. In research, this is an important step forward for us,” says Thomas Loosen, Head of the Fraunhofer Space Alliance Administrative Office. Although small satellites cannot transport any heavy payloads, they can be interconnected to form larger constellations, enabling them to provide services such as global Earth observation coverage in high quality.

When carried into orbit in 2021, ERNST will be equipped with an infrared camera for Earth observation. Interestingly, the camera is mounted on a special bracket known as an optical bank, which was manufactured using metallic 3D printing technology.

3D printing methods afford new, almost unlimited design freedom as well as shorter production times. Before now, they have been used very limited in the space sector on account of the stringent safety and quality standards. With the ERNST nanosatellite, the researchers at Fraunhofer EMI now have a test platform at their disposal to demonstrate this promising technology of the future.

We will be presenting the ERNST nanosatellite with infrared camera at the ILA Berlin Air Show from April 25 to 29, 2018, at the Joint Fraunhofer Booth No. 202 in Hall 4. There, we will also be exhibiting models of the GESTRA and TIRA radar systems, demonstrating the PIRAT software and much more. Our experts will be on hand for questions, interviews and detailed explanations.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2018/april/traveling-into-space...

Tobias Steinhäußer | Fraunhofer-Gesellschaft

Further reports about: EMI ILA TIRA infrared camera satellite small satellites

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>