Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ILA 2018: Traveling into space – safely, quickly and cost-effectively

10.04.2018

Low Earth orbit increasingly resembles an overcrowded junkyard. Disused satellites, burned-out rocket stages and thousands of pieces of debris produced by collisions – all these things pose a threat to infrastructure in space. Fraunhofer researchers have developed a new radar system and other technologies to give spacecraft better protection against space junk. And that is not all: By virtue of an agile small satellite, the scientists are now also making access to space quicker and more cost-effective.

Scraps of wreckage whizzing around present a serious danger to everything that moves in space. To avoid this debris, it is important to know where it is located.


The small satellite ERNST is roughly the size of a shoe box and carries an infrared camera for Earth observation.

Fraunhofer EMI

“Using the new GESTRA surveillance radar, it is possible to detect objects and debris in low Earth orbit up to 3000 kilometers,” says Helmut Wilden, Team Leader for Multifunctional RF Sensor Technology at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg near Bonn. While GESTRA is able to scan large areas of space around the clock, the radar system TIRA observes individual objects more closely.

“GESTRA monitors the expanses of space to establish whether – and indeed how many – objects there are. TIRA can then produce an image of the individual objects, enabling them to be analyzed in more detail,” explains Jens Fiege, Head of Internal and External Communications at Fraunhofer FHR. Moreover, with its sensitive antennae, TIRA can detect objects from just a few centimeters in size and larger, enabling it to measure their trajectories with high levels of precision.

Vulnerability analyses and smart design

When collisions with debris are unavoidable, robust materials and smart designs help protect satellites against serious damage. The new PIRAT software from the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, in Freiburg calculates whether the satellite design or individual components would withstand a collision. To this end, PIRAT factors in the flight path of the planned mission and the particle impacts to be expected in that region.

Combined with the experimental simulation of collisions, the researchers at Fraunhofer EMI create fact-based vulnerability analyses and protection concepts. “PIRAT makes it possible to determine the failure probability of individual components – even inside the satellite – if a piece of space junk pierces the external wall upon collision and spreads out as a cloud of fragments,” explains Dr. Martin Schimmerohn from Fraunhofer EMI.

“Through the clever placement of components and the adding of thin protective layers, you can find a safe design with minimum impact on the overall system.”

Small satellite with 3D-printed component

Thanks to innovative Fraunhofer technologies, it will not only be safer to travel to space in the future, but faster and more cost-effective too. In the form of ERNST, scientists at Fraunhofer EMI have developed a small satellite that is lightweight, reliable and multifunctional, which will make it possible to slash development costs and time-to-orbit.

“Generally, several small satellites ride piggyback with large launch vehicles – this allows even small groups of researchers with limited financial resources to carry out tests in space. In research, this is an important step forward for us,” says Thomas Loosen, Head of the Fraunhofer Space Alliance Administrative Office. Although small satellites cannot transport any heavy payloads, they can be interconnected to form larger constellations, enabling them to provide services such as global Earth observation coverage in high quality.

When carried into orbit in 2021, ERNST will be equipped with an infrared camera for Earth observation. Interestingly, the camera is mounted on a special bracket known as an optical bank, which was manufactured using metallic 3D printing technology.

3D printing methods afford new, almost unlimited design freedom as well as shorter production times. Before now, they have been used very limited in the space sector on account of the stringent safety and quality standards. With the ERNST nanosatellite, the researchers at Fraunhofer EMI now have a test platform at their disposal to demonstrate this promising technology of the future.

We will be presenting the ERNST nanosatellite with infrared camera at the ILA Berlin Air Show from April 25 to 29, 2018, at the Joint Fraunhofer Booth No. 202 in Hall 4. There, we will also be exhibiting models of the GESTRA and TIRA radar systems, demonstrating the PIRAT software and much more. Our experts will be on hand for questions, interviews and detailed explanations.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2018/april/traveling-into-space...

Tobias Steinhäußer | Fraunhofer-Gesellschaft

Further reports about: EMI ILA TIRA infrared camera satellite small satellites

More articles from Trade Fair News:

nachricht Medica 2018: Mobile motion feedback to help patients reduce relieving postures when walking
07.11.2018 | Technische Universität Kaiserslautern

nachricht Medica 2018: Control with your feet - computer game to help prevent thrombosis
05.11.2018 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>