Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ILA 2018: Traveling into space – safely, quickly and cost-effectively

10.04.2018

Low Earth orbit increasingly resembles an overcrowded junkyard. Disused satellites, burned-out rocket stages and thousands of pieces of debris produced by collisions – all these things pose a threat to infrastructure in space. Fraunhofer researchers have developed a new radar system and other technologies to give spacecraft better protection against space junk. And that is not all: By virtue of an agile small satellite, the scientists are now also making access to space quicker and more cost-effective.

Scraps of wreckage whizzing around present a serious danger to everything that moves in space. To avoid this debris, it is important to know where it is located.


The small satellite ERNST is roughly the size of a shoe box and carries an infrared camera for Earth observation.

Fraunhofer EMI

“Using the new GESTRA surveillance radar, it is possible to detect objects and debris in low Earth orbit up to 3000 kilometers,” says Helmut Wilden, Team Leader for Multifunctional RF Sensor Technology at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg near Bonn. While GESTRA is able to scan large areas of space around the clock, the radar system TIRA observes individual objects more closely.

“GESTRA monitors the expanses of space to establish whether – and indeed how many – objects there are. TIRA can then produce an image of the individual objects, enabling them to be analyzed in more detail,” explains Jens Fiege, Head of Internal and External Communications at Fraunhofer FHR. Moreover, with its sensitive antennae, TIRA can detect objects from just a few centimeters in size and larger, enabling it to measure their trajectories with high levels of precision.

Vulnerability analyses and smart design

When collisions with debris are unavoidable, robust materials and smart designs help protect satellites against serious damage. The new PIRAT software from the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, in Freiburg calculates whether the satellite design or individual components would withstand a collision. To this end, PIRAT factors in the flight path of the planned mission and the particle impacts to be expected in that region.

Combined with the experimental simulation of collisions, the researchers at Fraunhofer EMI create fact-based vulnerability analyses and protection concepts. “PIRAT makes it possible to determine the failure probability of individual components – even inside the satellite – if a piece of space junk pierces the external wall upon collision and spreads out as a cloud of fragments,” explains Dr. Martin Schimmerohn from Fraunhofer EMI.

“Through the clever placement of components and the adding of thin protective layers, you can find a safe design with minimum impact on the overall system.”

Small satellite with 3D-printed component

Thanks to innovative Fraunhofer technologies, it will not only be safer to travel to space in the future, but faster and more cost-effective too. In the form of ERNST, scientists at Fraunhofer EMI have developed a small satellite that is lightweight, reliable and multifunctional, which will make it possible to slash development costs and time-to-orbit.

“Generally, several small satellites ride piggyback with large launch vehicles – this allows even small groups of researchers with limited financial resources to carry out tests in space. In research, this is an important step forward for us,” says Thomas Loosen, Head of the Fraunhofer Space Alliance Administrative Office. Although small satellites cannot transport any heavy payloads, they can be interconnected to form larger constellations, enabling them to provide services such as global Earth observation coverage in high quality.

When carried into orbit in 2021, ERNST will be equipped with an infrared camera for Earth observation. Interestingly, the camera is mounted on a special bracket known as an optical bank, which was manufactured using metallic 3D printing technology.

3D printing methods afford new, almost unlimited design freedom as well as shorter production times. Before now, they have been used very limited in the space sector on account of the stringent safety and quality standards. With the ERNST nanosatellite, the researchers at Fraunhofer EMI now have a test platform at their disposal to demonstrate this promising technology of the future.

We will be presenting the ERNST nanosatellite with infrared camera at the ILA Berlin Air Show from April 25 to 29, 2018, at the Joint Fraunhofer Booth No. 202 in Hall 4. There, we will also be exhibiting models of the GESTRA and TIRA radar systems, demonstrating the PIRAT software and much more. Our experts will be on hand for questions, interviews and detailed explanations.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2018/april/traveling-into-space...

Tobias Steinhäußer | Fraunhofer-Gesellschaft

Further reports about: EMI ILA TIRA infrared camera satellite small satellites

More articles from Trade Fair News:

nachricht First implementation of Gecomer®-Technology in a Collaborative Robot
21.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht Novel sensor system improves reliability of high-temperature humidity measurements
20.03.2019 | Universität des Saarlandes

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>