Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extremely efficient heating of metals with the MAX infrared oven from Heraeus

08.05.2015

The coating of metal strips with tin or aluminum, enameling, melting of aluminum blocks or sintering of metallic inks requires very high temperatures. Such heating processes need a lot of energy, time and space.

Heraeus Noblelight offers the “MAX” infrared oven for heating process requiring very high temperatures. These ovens combine infrared radiation with convection and extremely high reflection. As a result, they are much superior to conventional industrial ovens.


A MAX infrared oven in continuous operation

Copyright Heraeus Noblelight 2015

They can be matched exactly to the process, which makes them more robust and stable. This allows capacity to be increased and quality to be improved. And these more efficient ovens save space, time and energy. Heraeus Noblelight will show infrared systems for metal processing on Stand C01 in Hall 9 at the Thermprocess Exhibition in Duesseldorf from 16 to 20 June.

In order to change the structure of metals, such as complex aluminum trims in motor vehicles, it is necessary to heat aluminum or magnesium components to very high temperatures. The heating of highly reflective metals is a real challenge for conventional technologies.

Up to 90% of the energy input can be lost by reflection or transmission. Thanks to the new MAX infrared technology, an energy efficiency of up to 90% can now be achieved for these tasks, depending on the particular application and the oven design.

Tests with various customers in our in-house Applications Centre have delivered very impressive results. Compared with conventional electrical heating methods, the heating process with a MAX oven was three times faster for metals. At the same time, energy consumption was only one fifth.

Advantages over standard ovens By Using QRC® Material

Tests have shown clear advantages of MAX ovens with QRC over conventional ovens using fireclay as the insulation material. Unlike conventional ovens, MAX ovens can be used in a continuous process, as the process chamber is made completely of quartz glass, which makes the oven resistant to thermal shock and a smaller, more compact oven is possible for the same power rating.

With a MAX infrared oven, the oven inside is comprised exclusively of quartz glass including QRC® nanoreflectors. The QRC® (Quartz Reflective Coating), developed by Heraeus is essentially an opaque, white, quartz glass. The nanostructure imparts a diffuse reflective capability to the material, resulting in a very high homogeneity of the temperature field in the oven.

In addition, quartz glass is also very clean, which is very important in the manufacture of items such as sensors and other sensitive parts in the car industry.

MAX – Exactly Tailored To Customer Needs

MAX infrared systems are flexibly tailored to meet customer requirements, in order to achieve the highest possible energy-efficiency for the process in question.

All MAX infrared ovens share a compact design and construction, so that the input energy is used more efficiently because the infrared radiation is optimally reflected within the oven, while the natural convection is also used.

As a result, process times can be shortened, which significantly increases energy efficiency and reduces operating costs. MAX infrared ovens provide systems solutions. Computer simulation at the design phase also helps to ensure energy efficiency.

MAX oven elements can be arranged one behind the other in a modular fashion. They can then be individually controlled, making possibly very fast product change-over. The compact ovens can also be combined with conveyor systems.


Heraeus, the technology group headquartered in Hanau, Germany, is a leading international family-owned company formed in 1851. With expertise, a focus on innovations, operational excellence and an entrepreneurial leadership, we strive to continuously improve our business performance.
We create high-quality solutions for our clients and strengthen their competitiveness in the long term by combining material expertise with technological know-how. Our ideas are focused on themes such as the environment, energy, health, mobility and industrial applications. Our portfolio ranges from components to coordinated material systems which are used in a wide variety of industries, including the steel, electronics, chemical, automotive and telecommunications industries.
In the 2014 financial year, Heraeus generated product revenues of €3.4 bn and precious metal revenues of €12.2bn euros. With around 12,600 employees worldwide in more than 100 subsidiaries in 38 countries, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources and systems. In 2014, Heraeus Noblelight had an annual turnover of 137.3 Million € and employed 884 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters, systems and solutions for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information, please contact:
Technical: Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com

Press: Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com
www.heraeus-noblelight.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>