CO2 Capture – Gas Treatment with Lipophilic Amines

An innovative method for the separation of CO2 from gases, e.g. flue or synthesis gas, by chemisorption using an aqueous solution of mixed lipophilic amines, such as

N,N- Dimethylcyclohexylamine (DMC). The amine solution loaded with CO2 is regenerated with the help of a temperature induced thermomorphic liquid-liquid-phase separation at moderate temperatures lying well below 100°C. The amines partition into a distinct organic phase, while the CO2 initially remains in the aqueous phase as HCO3- from which it is then liberated and recovered as a gas. Commercial Opportunities: Since the dissociation of the amines from CO2 is brought about by the liquid-liquid miscibility gap, the solvent regeneration operates at much lower temperatures than in conventional CO2-capture processes and can thus be tailored to utilize previously unexploited waste heat sources. The low heat of reaction and dispensing with stripping steam leads to an extremely energy-efficient process for CO2 capture from industrial gases comparable with or superior to the best state-of-the-art technologies. Further advantages include the excellent CO2 absorption kinetics and the improved resistance to oxidative degradation.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors