Autocorrelation-Based Detection of Infinite Loops at Runtime

We present a new algorithm for the detection of infinite loop bugs in software. Source code is not needed. The algorithm is based on autocorrelation of a program execution’s branch target address sequence. We describe the implementation of the algorithm in a dynamic binary instrumentation tool; the result is light-weight enough to be applied continuously at runtime. Functionality of the tool is
evaluated with infinite loop bug test cases from the Juliet test suite for program analyzers. Applicability of the algorithm to production software is demonstrated by using the tool to detect previously known infinite loop bugs in cgit, Avahi and PHP.

Further information: PDF

Bayerische Patentallianz GmbH
Phone: +49 89 5480177-0

Contact
Dr. Robert Phelps

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors