ADI – Modified arginine deiminase as anti-tumor drug

Arginine deiminase (ADI) produces depletion of arginine and has been studied as a potential antitumor drug for the treatment of arginine-auxotrophic tumors such as hepato-cellular carcinoma (HCC) and malignant melanoma. These tumors that are sensitive to arginine depletion do not express a certain key enzyme in the synthesis of arginine from citrulline. Recent data showed that a pegylated form of ADI inhibits human melanomas and HCCs in vitro and in vivo. Furthermore, studies on human lymphatic leukemia cell lines confirmed ADI´s anti-angiogenic activity.

The main limitation for in vivo applications of numerous ADIs lies in their pH-dependant activity profile. ADI from Pseudomonas plecoglossicida (PpADI) for example has a pH optimum at 6.5. A shift from 6.5 to 7.5 (physiological conditions) results in an activity drop of approximately 80%. In order to shift the pH optimum, a directed-evolution protocol based on an adapted citrulline screening protocol in microtiter-plate format was developed and validated by the present invention. A proof of concept for ADI engineering resulted in an improved pH optimum and increased resistance under physiological and slightly alkaline conditions.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors