Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broad Institute Awarded Major Grant to Bolster Epigenomics Research

02.10.2008
Researchers at the Broad Institute of Harvard and MIT announced today that they have received a grant from the National Institutes of Health (NIH) to map the epigenomes of a variety of medically important cell types, including human embryonic stem cells.

The five-year, ~$15M grant, part of the NIH Roadmap for Medical Research, designates the institute as one of four Reference Epigenome Mapping Centers nationwide that will aim to transform the understanding of an exquisite control system — a code of so-called “epigenetic” cues that specify when and where in the body genes are made active.

To systematically decipher and analyze these controls, researchers from across the Harvard and MIT communities will come together to study at least 100 distinct types of human cells using the latest methods in stem cell biology, genomics, technology, computation, and production-scale research.

“The human epigenome is arguably the next frontier of genomic research,” said co-principal investigator Alex Meissner, who is an associate member at the Broad Institute and an assistant professor in the Department of Stem Cell and Regenerative Biology at Harvard University. “Bolstered by recent technological advances, this award will enable us to create comprehensive epigenomic maps of a variety of human cells and to share that data with the worldwide scientific community.”

“Epigenomics lies at a key intersection point between genome biology and human disease,” said Bradley Bernstein, a co-principal investigator as well as a Broad Institute associate member and an assistant professor at Harvard Medical School and Massachusetts General Hospital. “By glimpsing the normal epigenome at unprecedented breadth and depth, we will lay the critical groundwork for future insights into the epigenetic basis of a variety of diseases, including cancers.”

An overarching question in human biology is how cells in the body, with the exact same DNA, adopt such distinct forms and functions. The answer lies mainly in the epigenome, a special code of chemical tags affixed to DNA or to its supporting proteins (known as “histones”) that act as gatekeepers to the genome — enabling genes to be switched on or ensuring they remain switched off. In the past few years, two techniques have transformed researchers’ abilities to probe cells’ epigenomes: ChIP-Seq and high-throughput bisulfite sequencing (HTBS). These technologies can help pinpoint the genomic locations of various types of chemical tags, such as methyl groups, and thus chart the epigenome.

The Reference Epigenome Mapping Center (REMC) at the Broad Institute will help create comprehensive, genome-scale maps of the epigenomes of a variety of cells, including human embryonic stem cells, various adult stem cells, and other key cell types. The researchers will survey both the DNA backbone and its accompanying histone proteins for chemical modifications using HTBS and ChIP-Seq respectively, which take advantage of the increased throughput and decreased cost of next-generation DNA sequencing, and provide unprecedented precision and genomic coverage.

Just as the Human Genome Project provided researchers with a draft genome sequence, the REMCs will help create draft epigenomic maps of a diverse set of cell types. Those data will serve as a vast resource for the scientific community to enhance the understanding of epigenetic mechanisms of disease, pinpoint novel molecular targets for therapy, complement ongoing investigations of the genetic susceptibilities of a wide range of diseases, and bolster current research in stem cell biology and regenerative medicine.

The NIH award to the Broad Institute represents one of four areas of epigenomic research to receive funding under the NIH Roadmap Epigenomics Program. In addition to the work of the epigenome mapping centers, other funded centers will focus on epigenomics data analysis and coordination, technology development in epigenetics, and the discovery of novel chemical tags that mark the epigenomes of mammalian cells. Funds totaling roughly $18 million will be awarded for these activities in 2008.

About the Broad Institute of Harvard and MIT

The Broad Institute of Harvard and MIT was founded in 2003 to bring the power of genome-based knowledge to medicine. It pursues this mission by empowering creative scientists to construct new and robust tools for genomic medicine, to apply them to the understanding and treatment of disease, and to make them freely accessible to the global scientific community.

The Institute’s scientific community is comprised of faculty, professional staff, and students from throughout the MIT and Harvard, and is jointly governed by the two universities.

Organized around scientific programs and platforms, the unique structure of the Broad Institute enables scientists to collaborate on transformative projects across many scientific and medical disciplines.

Nicole Davis | Newswise Science News
Further information:
http://www.broad.mit.edu

Further reports about: Broad Institute ChIP-Seq DNA Epigenomics HTBS Harvard NIH REMC cell biology cell types epigenome human cells stem cells

More articles from Science Education:

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

nachricht The classroom of tomorrow – DFKI and TUK open lab for new digital teaching and learning methods
03.05.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>