Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncertainty relation in quantum information theory

14.07.2015

Physicists in Vienna/Austria, Nagoya/Japan and Brisbane/Australia confirmed an uncertainty relation as a trade-off of information between two quantum measurements.

Information is a key quantity in science and plays a significant role in many economic sectors such as communication technologies, cryptography, or data storage. In quantum communication and information technology the transfer and encryption of information is studied.


Research reactor at the Institute of Atomic and Subatomic Physics

TU Wien


Concept of the experiment

TU Wien

In the quantum regime, phenomena such as the Heisenberg’s Uncertainty Principle have to be taken into account as well. Experiments at TU Wien in collaboration with theoreticians from Japan and Australia now have a newer, closer look at the uncertainty with respect to information theory. Fundamentals of quantum physics are illuminated by the insights from information theory.

Heisenberg's Uncertainty Principle is one of the most fundamental tenets of quantum physics. It states that certain properties of quantum particles, such as position and momentum, cannot be determined simultaneously with arbitrary precision. A particle can be in different places at the same time, and take different velocities simultaneously.

The question of where and how fast the particles "really" move is meaningless – nature simply does not contain any information about it – one might say the particles do not know themselves. While this is the modern understanding of the Uncertainty Principle, historically the emphasis was on a different aspect: the change in a system caused by the very act of observing it.

If you want to measure, for example, the location of an electron with the help of light waves very precisely, then you have to use very short light waves. However, short-wavelength light has a lot of energy, so that the momentum of the particle is changed considerably. The more accurately you want to measure the position, the more you disturb the momentum. "Unfortunately, these two representations of the uncertainty in everyday physics, but also in textbooks, are often confused, although they describe totally different physical circumstances," says Stephan Sponar from the Institute of Atomic and Subatomic Physics at TU Wien.

Last year, physicists in Australia, the US and Japan, by using the so-called information entropy, precisely analyzed uncertainty in terms of “knowledge" and "predictability" and established a trade-off relation between them. These concepts play a central role in the theory of communication, engineering and computer science. "Therefore, it is perfectly natural to find a formulation of the Heisenberg uncertainty principle, which is based on principles of information theory," says Bülent Demirel.

The research group of Prof. Hasegawa at TU Wien tested this new formulation by a neutron optical method, using the research reactor at the Institute of Atomic and Subatomic Physics. For the experiment, the spins of neutrons produced in nuclear fission were determined by successive measurements. Unlike in classical computer science, where classical bits can have only the values 0 or 1, the spin represents a so-called quantum bit (qubit) of information. For spin measurements, an uncertainty principle applies, just like for position and momentum. One cannot simultaneously measure the spin in the X-direction and in the Y-direction precisely. Thus, one can view the neutron spins as a carrier of qubits and thus test the information-theoretical uncertainty.

It was possible to test the trade-off relation for “knowledge" and "predictability". The higher the knowledge of spin in the X-direction acquired by the measurement of the qubit, the lower was the predictability of its spin in the Y-direction, and vice versa. Quantum information prohibits having both high knowledge and high predictability. Further, protocols for quantum error correction were applied to determine how much information loss is reversible and can therefore be regained and how much information will be inevitably destroyed by a measurement. The correctness of the postulated relationship between knowledge and predictability was clearly demonstrated, with the utmost precision. This work will be presented by the research team in the journal "Physical Review Letters" and has been chosen as "Editor's Suggestion".

The new results quantify the limits of the transmission of information through quantum channels and thus are very important in many areas of quantum information technology. Noisy communication channels, information loss along such channels, and the quantum encryption of data may be better understood.

Original publication: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.030401

Contact:
Associate Prof. Dipl.-Ing. Dr. Yuji HASEGAWA
Institute of Atomic and Subatomic Physics
TU Wien
+43-1-58801-141490
hasegawa@ati.ac.at

Weitere Informationen:

Original publication: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.030401

Dr. Florian Aigner | Technische Universität Wien

More articles from Physics and Astronomy:

nachricht Electric solid propellant -- can it take the heat?
14.02.2020 | University of Illinois College of Engineering

nachricht Pitt study uncovers new electronic state of matter
14.02.2020 | University of Pittsburgh

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>