Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas Tech Physicist’s New Spectroscopic Camera Captures Day-Old Supernova 73 million Light Years from Earth

18.10.2013
With the help of a special spectroscopic camera developed by a Texas Tech University physicist, researchers at Caltech and Las Cumbres Observatory Global Telescope Network captured rare images of a star in another galaxy going supernova within a day of the star’s explosion.

This is the first time scientists have pinpointed a star that eventually exploded as a stripped-envelope supernova, called a type Ib, said David Sand, an assistant professor in the Department of Physics who developed the camera.


The bottom inlay shows the star prior to the supernova. The top inlay shows the latest image a day after the star exploded.

The global team of astrophysicists, led by Yi Cao of Caltech, found the supernova on June 16. Their research was published online in the peer-reviewed journal The Astrophysical Journal Letters.

“It is very rare to catch a supernova within a day or two of explosion,” Sand said. “Up until now, it has happened at most about a dozen times. It is equally rare that we actually have Hubble Space Telescope imaging of the location of the supernova before it happened, and we were able to see the star that eventually exploded.”

Sand said it took 73 million light years for the illumination from the star’s explosion to travel to Earth.

“This star was quite far away in the galaxy NGC 6805, although we would consider it a ‘local’ galaxy,” he said. “There is no way of knowing if something so far away has any planets around it. However, it is unlikely. We found that the supernova came from what is called a Wolf-Rayet star. It is very massive and very young. It likely did not live long enough to form planets.”

Wolf-Rayet stars are known to have stellar winds where they eject some of the material off their surface and spew it out into space. Observations indicate they are devoid of hydrogen, but contain helium in the remaining outer layer of the star.

Their massive size leads to a speedy demise, Sand said. Where our sun is roughly 5 billion years old, this star was only in the tens of millions of years old. Wolf-Rayet stars tend to burn up all of their fuel quickly in order to support their own weight because the nuclear burning balances out gravity.

Cues from the spectroscopic camera images led researchers to classify their discovery as a type Ib supernova, which are thought to be the explosions of these massive stars that have lost their outer layers right before their death due to a stellar wind.

Exact details of what happens in these supernovae are murky, he said. When they do explode, they burn roughly as bright as five billion of our suns.

The Intermediate Palomar Transient Factory project, which is a scientific collaboration with California Institute of Technology, Los Alamos National Laboratory, University of Wisconsin and several others, is an automated survey of night sky dedicated to finding transient supernova events. The survey finds hundreds of new supernovae annually, and scientists here try to understand what types of stars become which types of supernova.

Sand led the development and operations of the special camera, the FLOYDS spectrograph, which was used to help identify the specific kind of supernova. Taking a spectroscopic image helps scientists to tell what kind of supernova they’re looking at by splitting the supernova’s light up into the colors of the rainbow.

A normal photograph isn’t enough to tell, he said.

The FLOYDS spectrographs, of which there are only two in the world, are attached to two-meter telescopes located in Hawaii and Australia. The cameras operate completely robotically allowing scientists to confirm supernova earlier than ever before.

In the last six months, Sand and others have confirmed 25 different supernovae with the new camera. This particular supernova is one of the first published results.

“This is where FLOYDS comes in, and its robotic nature, which lets us study supernovae young,” Sand said. “That’s the first story. The second story is this lucky Hubble imaging from 2005. Someone took an image with Hubble of the galaxy where this supernova happened. Just sheer luck – nothing to do with the supernova or seeing into the future or anything. Zoom to 2013, and we discover the supernova within a day of its explosion. We look in the Hubble data archive and notice the image from eight years prior, and we just match it up with our most recent data to see if there is a star in the old image at the exact same position as the supernova today.

“The second story really is luck, but it is happening more and more these days as the Hubble telescope collects more images of nearby galaxies.”

Sand said scientists can take another Hubble image at the location of the supernova after it has faded away. If the star that he and others identified as the progenitor to the supernova has disappeared, then they will know which star died. Otherwise, if the star is still there, then the supernova came from some other object too faint for researchers to see, and the mystery continues.

For a copy of the report, contact John Davis.

CONTACT: David Sand, assistant professor, Department of Physics, Texas Tech University, (806) 742-2264 or david.sand@ttu.edu.

John Davis | Newswise
Further information:
http://www.ttu.edu

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>