Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An accident? Construction work? A bottleneck? No, just too much traffic.

04.03.2008
A new study from a Japanese research group explains why we’re occasionally caught in traffic jams for no visible reason. The real origin of traffic jams often has nothing to do with obvious obstructions such as accidents or construction work but is simply the result of there being too many cars on the road.

The research, published today, Tuesday, 4 March, in the New Journal of Physics, shows how model patterns, normally used to understand the movement of many-particle systems, have been applied to real-life moving traffic. The research shows that even tiny fluctuations in car-road density cause a chain reaction which can lead to a jam.

The research found that tiny fluctuations in speed, always existing when drivers want to keep appropriate headway space, have a cumulative effect. Once traffic reaches a critical density, the cumulative effect of gentle braking rushes back over drivers like a wave and leads to a standstill.

The researchers in Japan used a circular track with a circumference of 230m. They put 22 cars on the road and asked the drivers to go steadily at 30km/h around the track. While the flow was initially free, the effect of a driver altering his speed reverberated around the track and led to brief standstills.

Yuki Sugiyama, physicist from Nagoya University, said, “Although the emerging jam in our experiment is small, its behaviour is not different from large ones on highways. When a large number of vehicles, beyond the road capacity, are successively injected into the road, the density exceeds the critical value and the free flow state becomes unstable.”

The researchers will be advancing their research by using larger roads and more vehicles to further test their findings.

The research suggests that it might be possible to estimate critical density of roads, making it possible to build roads fit for the number of drivers needing use of it or, on for example toll roads, only allowing the right number of cars access to the road to stop mid-flow traffic jams.

Joe Winters | alfa
Further information:
http://stacks.iop.org/NJP/10/033001

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>