Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic light-emitting diodes become brighter and more durable

28.05.2018

Organic light-emitting diodes (OLEDs) truly have matured enough to allow for first commercial products in the form of small and large displays. In order to compete in further markets and even open new possibilities (automotive lighting, head-mounted-displays, micro displays, etc.), OLEDs need to see further improvements in device lifetime while operating at their best possible efficiency. Currently, intrinsic performance progress is solely driven by material development.

Now, researchers from the Universitat Autònoma de Barcelona and Technische Universität Dresden have demonstrated the possibility of using ultrastable film formation to improve the performance of state-of-the-art OLEDs.


Illustration summarizing the nanoscale difference of ultrastable glasses compared to conventional ones

Joan Ráfols-Ribe, Paul-Anton Will

In their joint paper published in Science Advances with the title ‘High-performance organic light-emitting diodes comprising ultrastable glass layers’, the researchers show in a detailed study that significant increases of efficiency and operational stability (> 15% for both parameters and all cases, significantly higher for individual samples) are achieved for four different phosphorescent emitters.

To achieve these results, the emission layers of the respective OLEDs were grown as ultrastable glasses – a growth condition that allows for thermodynamically most stable amorphous solids.

Illustration summarizing the nanoscale difference of ultrastable glasses compared to conventional ones and the impact on the layer and device properties of organic light-emitting diodes (OLEDs).

This finding is significant, because it is an optimization which involves neither a change of materials used nor changes to the device architecture. Both are the typical starting points for improvements in the field of OLEDs. This concept can be universally explored in every given specific OLED stack, which will be equally appreciated by leading industry.

This in particular includes thermally activated delayed fluorescence (TADF) OLEDs, which are seeing tremendous research and development interest at the moment. Furthermore, the improvements that, as shown by the researchers, can be tracked back to differences in the exciton dynamics on the nanoscale suggest that other fundamental properties of organic semiconductors (e.g. transport, charge separation, energy transfer) can also be equally affected.

The research leading to these results was partly carried out in the project ‘Modelling stability of organic phosphorescent light-emitting diodes (MOSTOPHOS)’ funded by the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 646259). Currently, this concept is being explored together with cynora GmbH, a MOSTOPHOS partner and a world-leading company in development of TADF emitters.

Publication: J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. González-Silveira, S. Lenk, J. Rodríguez-Viejo, S. Reineke, High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).

About the Group of Nanomaterials and Microsystems (GNaM): GNaM is part of the Physics Department at the Universitat Autònoma de Barcelona and led by Prof. Javier Rodríguez-Viejo. The group has been deeply involved in the growth and characterization of stable organic glasses, focusing on their thermal, thermodynamic and transport properties.

Due to their unique properties including among others higher densities, better kinetic and thermodynamic stabilities and higher modulus, stable glasses are presently at the core of the research in the glass community providing a unique framework for a better comprehension of the glassy state and new opportunities for applications. GNaM is also developing new tools to characterize thermoelectric properties of low-dimensional and disordered solids and has recently founded a start-up company, FutureSisens, for the commercialization of Si-based thermoelectric sensors.

About the Light-Emitting and eXcitonic Organic Semiconductor (LEXOS) group: The LEXOS group is part of the Dresden Integrated Center for Applied Physics and Photonics Materials (IAPP) and the Institute of Applied Physics of the Technische Universität Dresden and led by Prof. Sebastian Reineke. The LEXOS group has long-standing expertise in the research and development of organic light-emitting diodes (OLEDs).

The current OLED research comprises stack and concept development, devices optics, charge transport and recombination studies, long-term stability investigations, material development (dopant and emitter materials), and device integration. A second research focus of the LEXOS group is the investigation of excitonic and luminescent systems covering organic and other related emerging materials.

The group has strong expertise in the optical spectroscopy of such systems. One current example is the investigation of organic biluminescence, where luminophores show both fluorescence and phosphorescence at room temperature.

Media inquiries:
Prof. Dr. Sebastian Reineke
Technische Universität Dresden
Fakultät Physik
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)
Tel.: +49 (0) 351 463-38686
Email: sebastian.reineke@tu-dresden.de

Kim-Astrid Magister | Technische Universität Dresden
Further information:
http://www.tu-dresden.de

More articles from Physics and Astronomy:

nachricht Original kilogram replaced -- new International System of Units (SI) entered into force
22.05.2019 | Forschungsverbund Berlin

nachricht Stellar waltz with dramatic ending
22.05.2019 | University of Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>