Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly proposed reference datasets improve weather satellite data quality

10.01.2017

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of satellites whizzing around Earth collecting mountains of data makes such constant and wide-ranging access to accurate weather forecasts possible. Just one satellite, such as the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellite-R that launched in 2016, can collect 3.5 terabytes of weather data per day.


This is an artist's rendition of NASA's JPSS satellite, which carries a microwave instrument that can monitor Earth's weather from space.

Credit: NASA/NOAA

But how do scientists ensure satellite-measured weather data is good? They can compare live data against high-quality reference data from in-orbit satellites. Making such resources available is a goal of the Global Space-based Inter-Calibration System (GSICS), an international consortium of 15 satellite agencies that collaborate on monitoring satellites and developing methods to ensure the quality of their weather data.

"The quality of the satellite data drives how prepared nations--and the world--can be when it comes to weather-related events," said GSICS Deputy Director Manik Bali, a faculty research assistant in the Earth System Science Interdisciplinary Center (ESSIC), a joint center of the University of Maryland and NASA's Goddard Space Flight Center. Bali is also a NOAA affiliate.

The World Meteorological Organization (WMO), a United Nations specialized agency and the Coordination Group for Meteorological Satellites (CGMS), launched GSICS in 2005. ESSIC contributes manpower and infrastructure support to GSICS, including the servers needed to share data between GSICS collaborators worldwide, enabling the monitoring of weather satellites among member agencies and the correction of measurement anomalies in real time.

One GSICS breakthrough came in 2011, with a paper demonstrating that a GSICS-developed algorithm corrected a temperature difference of approximately 3 degrees Celsius between two satellites. The results were published in the Bulletin of the American Meteorological Society. While that temperature difference may sound small, the world's nations recently negotiated the Paris Climate Agreement, which seeks to limit global warming to a maximum of 2 degrees Celsius above pre-industrial temperatures.

Also in 2011, Cheng-Zhi Zou, a NOAA research scientist and former chair of the GSICS Microwave Subgroup, intercalibrated 38 years of climate data--starting in 1979--to generate what NOAA calls a fundamental climate data record (FCDR). The FCDR was published in the Journal of Geophysical Research: Atmospheres.

At the American Geophysical Union's (AGU) fall meeting in December 2016, Bali demonstrated that Zou's FCDR was suitable for monitoring microwave satellites, including the Advanced Technology Microwave Sounder onboard NOAA/NASA's Joint Polar Satellite System (JPSS). When launched, JPSS will replace the aging National Polar-orbiting Operational Environmental Satellite System and provide full global monitoring coverage twice a day. Bali expects the FCDR will help monitor and adjust data gathered during JPSS missions.

At the recent AGU meeting, Bali also showed that the European Organisation for the Exploitation of Meteorological Satellites' Infrared Atmospheric Sounding Interferometer (IASI) and NASA's Atmospheric Infrared Sounder exhibit sufficiently stable behavior to serve as in-orbit references. Calibrating against these satellites can reduce errors from 2 degrees Celsius to below 0.1 degrees Celsius.

"This has given tremendous confidence to the GSICS calibration community that uses IASI-A as an in-orbit reference to monitor its geostationary satellites," said Bali.

Moving forward, Bali's colleagues at ESSIC will continue to support the science goals of the JPSS satellite mission through the Cooperative Institute for Climate and Satellites (CICS), which is managed by ESSIC and was created in 2009 through a $93 million agreement with NOAA.

"ESSIC's leadership in supporting these global initiatives is very important," said Bali. "Looking ahead, I see a far greater interaction between NOAA and ESSIC/CICS, which will help NOAA lead the global satellite calibration efforts."

###

The presentation, "Selection of on-orbit references for Global Space Based Inter-Calibration System" by Manik Bali, Fuzhong Weng, Lawrence E Flynn, Cheng-Zhi Zou, Ralph Ferraro and Thomas Pagano was given on December 13, 2016, at the American Geophysical Union Fall Meeting.

The paper, "The Global Space-Based Inter-Calibration System" by M. Goldberg, G. Ohring, J. Butler, C. Cao, R. Datla, D. R. Doelling, V. Gärtner, T. Hewison, B. Iacovazzi, D. Kim, T. Kurino, J. Lafeuille, P. Minnis, D. Renaut, J. Schmetz, D. Tobin, L. Wang, F. Weng, X. Wu, F. Yu, P. Zhang, and T. Zhu was published in the April 2001 issue of the Bulletin of the American Meterological Society.

The paper, "Intersatellite calibration of AMSU-A observations for weather and climate applications" by Cheng-Zhi Zou and Wenhui Wang was published on December 13, 2011 in the Journal of Geophysical Research: Atmospheres.

Media Relations Contact: Irene Ying, 301-405-5204, zying@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Irene Ying
zying@umd.edu
301-405-5204

 @UMDRightNow

http://www.umdrightnow.umd.edu/ 

Irene Ying | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>