Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two proteins may help prevent Alzheimer’s brain plaques

22.01.2004


A study led by researchers at Washington University School of Medicine in St. Louis suggests two proteins work together in mice to prevent formation of brain plaques characteristic of Alzheimer’s disease.



The proteins, apolipoprotein E (apoE) and clusterin, appear to act as "chaperones" orchestrating the clearance of potentially hazardous molecules out of the brain. Ironically, these proteins also have been implicated in a key stage of plaque formation. The study appears in the Jan. 22 issue of the journal Neuron.

"This is one of the first demonstrations in living animals that these proteins affect amyloid clearance," says David H. Holtzman, M.D., the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology. "Our findings suggest it is worthwhile to explore the use of drugs or therapies to alter or perhaps increase the expression of these proteins as a potential treatment for Alzheimer’s disease."


Holtzman, who also is the Charlotte and Paul Hagemann Professor of Neurology and professor of molecular biology and pharmacology, led the study; Ronald DeMattos, Ph.D., formerly an instructor in neurology, and John R. Cirrito, a graduate student in neuroscience, are co-first authors. The team collaborated with Eli Lilly and Company, where DeMattos now works.

A key step in the development of Alzheimer’s disease is the formation of brain plaques. Studies suggest these plaques form when the protein amyloid beta (Abeta) is converted from its soluble to its insoluble form and coalesces into hair-shaped threads called fibrils. Unable to dissolve or be cleared out of the brain, the fibrils eventually clump together and become the amyloid plaques that are a hallmark of Alzheimer’s.

In previous studies, Holtzman’s team was instrumental in showing both apoE and clusterin promote the formation of these fibrils. Their new paper confirms that in mice genetically engineered to develop Alzheimer’s disease-like brain plaques, those without either apoE or clusterin developed fewer fibrils.

The team therefore expected mice lacking both proteins would develop even fewer deposits. However, the opposite was true. Moreover, fibrils in animals lacking both proteins developed significantly earlier in life and resulted in the more advanced amyloid plaques. Such extreme Abeta deposition at a young age is akin to that in humans with the rare, genetic form of the disease called familial Alzheimer’s.

"This was an unexpected and striking result," Holtzman says. "Though at first counter-intuitive, it implies that apoE and clusterin cooperate to suppress Abeta deposition."

In addition to increased amounts of Abeta in brain tissue, the team also found abnormally high levels in the fluid surrounding individual brain cells and in the fluid surrounding the entire brain. In contrast, levels of Abeta in the blood were not abnormally high.

Combined, the results suggest the two proteins not only play a role in the development of fibrils, but also in the clearance of Abeta from brain tissue and surrounding fluid. Without its chaperones, Abeta protein settles in the brain and eventually clusters into plaques.

According to Holtzman, the next step is to determine whether human forms of apoE and clusterin also delay or prevent the development of plaques in the mouse model and to explore the potential for drugs or gene therapy to reverse plaque formation in mice.


DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Tayler JW, Harmony JAK, Aronow BJ, Bales KR, Paul SM, Holtzman DM. ApoE and clusterin cooperatively suppress Abeta levels and deposition: Evidence at apoE regulates extracellular Abeta metabolism in vivo. Neuron, Jan. 22, 2004.

Funding from the National Institutes of Health, MetLife Foundation and Eli Lilly and Company supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/4FEF72B0382045EE86256E21007A8CFB?OpenDocument
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>