Two proteins may help prevent Alzheimer’s brain plaques

A study led by researchers at Washington University School of Medicine in St. Louis suggests two proteins work together in mice to prevent formation of brain plaques characteristic of Alzheimer’s disease.

The proteins, apolipoprotein E (apoE) and clusterin, appear to act as “chaperones” orchestrating the clearance of potentially hazardous molecules out of the brain. Ironically, these proteins also have been implicated in a key stage of plaque formation. The study appears in the Jan. 22 issue of the journal Neuron.

“This is one of the first demonstrations in living animals that these proteins affect amyloid clearance,” says David H. Holtzman, M.D., the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology. “Our findings suggest it is worthwhile to explore the use of drugs or therapies to alter or perhaps increase the expression of these proteins as a potential treatment for Alzheimer’s disease.”

Holtzman, who also is the Charlotte and Paul Hagemann Professor of Neurology and professor of molecular biology and pharmacology, led the study; Ronald DeMattos, Ph.D., formerly an instructor in neurology, and John R. Cirrito, a graduate student in neuroscience, are co-first authors. The team collaborated with Eli Lilly and Company, where DeMattos now works.

A key step in the development of Alzheimer’s disease is the formation of brain plaques. Studies suggest these plaques form when the protein amyloid beta (Abeta) is converted from its soluble to its insoluble form and coalesces into hair-shaped threads called fibrils. Unable to dissolve or be cleared out of the brain, the fibrils eventually clump together and become the amyloid plaques that are a hallmark of Alzheimer’s.

In previous studies, Holtzman’s team was instrumental in showing both apoE and clusterin promote the formation of these fibrils. Their new paper confirms that in mice genetically engineered to develop Alzheimer’s disease-like brain plaques, those without either apoE or clusterin developed fewer fibrils.

The team therefore expected mice lacking both proteins would develop even fewer deposits. However, the opposite was true. Moreover, fibrils in animals lacking both proteins developed significantly earlier in life and resulted in the more advanced amyloid plaques. Such extreme Abeta deposition at a young age is akin to that in humans with the rare, genetic form of the disease called familial Alzheimer’s.

“This was an unexpected and striking result,” Holtzman says. “Though at first counter-intuitive, it implies that apoE and clusterin cooperate to suppress Abeta deposition.”

In addition to increased amounts of Abeta in brain tissue, the team also found abnormally high levels in the fluid surrounding individual brain cells and in the fluid surrounding the entire brain. In contrast, levels of Abeta in the blood were not abnormally high.

Combined, the results suggest the two proteins not only play a role in the development of fibrils, but also in the clearance of Abeta from brain tissue and surrounding fluid. Without its chaperones, Abeta protein settles in the brain and eventually clusters into plaques.

According to Holtzman, the next step is to determine whether human forms of apoE and clusterin also delay or prevent the development of plaques in the mouse model and to explore the potential for drugs or gene therapy to reverse plaque formation in mice.

DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Tayler JW, Harmony JAK, Aronow BJ, Bales KR, Paul SM, Holtzman DM. ApoE and clusterin cooperatively suppress Abeta levels and deposition: Evidence at apoE regulates extracellular Abeta metabolism in vivo. Neuron, Jan. 22, 2004.

Funding from the National Institutes of Health, MetLife Foundation and Eli Lilly and Company supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Microscopy beyond the resolution limit

The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy. In the pages…

Material found in house paint may spur technology revolution

Sandia developed new device to more efficiently process information. The development of a new method to make non-volatile computer memory may have unlocked a problem that has been holding back…

Immune protein orchestrates daily rhythm of squid-bacteria symbiotic relationship

Nearly every organism hosts a collection of symbiotic microbes–a microbiome. It is now recognized that microbiomes are major drivers of health in all animals, including humans, and that these symbiotic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close