University research on body’s way of beating heart attacks

Researchers at the University of Bradford are looking for a better understanding of how the body can fight-off heart disease – without needing drugs.

Senior lecturer Dr Khalid Naseem in the University’s Department of Biomedical Studies has secured two grants totalling almost £150,000 from the British Heart Foundation to fund two research posts.

Dr Naseem said: “Coronary heart disease is the greatest cause of death in industrialised nations and we are looking for a better understanding of the process that could lead to a cure.”

The research will look at how nitric oxide is formed in the blood. Nitric oxide is produced naturally and can help to prevent the activation of platelets in the blood – the process known as thrombosis.

Dr Naseem continued: “Rather than developing new drugs, this research will look at enhancing the body’s own mechanism to fight heart disease.”

He explained that the regulation of blood platelet activity was “fundamentally important” to the development of coronary heart disease and was an area of “intense international research”.

“We are looking at how nitric oxide is made in the blood so that we can harness it as a therapeutic agent,” added Dr Naseem.

The two BHF grants consist of £68,000 for a PhD studentship, which has already been taken up by Rocia Riba, and £80,000 to fund a post-Doctoral fellow.

Media Contact

Emma Scales alfa

Alle Nachrichten aus der Kategorie: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Cyanobacteria: Small Candidates …

… as Great Hopes for Medicine and Biotechnology In the coming years, scientists at the Chair of Technical Biochemistry at TU Dresden will work on the genomic investigation of previously…

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional…

Big-hearted corvids

Social life as a driving factor of birds’ generosity. Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close