Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Age-related muscle loss linked to protein interplay, says Stanford researcher

28.11.2003


Any older athlete can attest that aging muscles don’t heal as fast as youthful ones. Now researchers at Stanford University School of Medicine have found a molecular link between older muscles and slow healing. This work could lead to ways of preventing atrophy from immobilization, space flight or simply due to aging.



"What you really want to do is maintain the youthfulness of the regeneration pathway," said Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences and an investigator at the Veterans Affairs Palo Alto Health Care System. The work will be published in the Nov. 28 issue of Science.

Rando and postdoctoral scholar Irina Conboy, PhD, focused their attention on a group of cells called satellite cells, which dot the outside of muscle fibers. These cells come to the rescue of damaged muscles, dividing to form new muscle tissue and generating new satellite cells for future repairs.


In previous work, Rando found that satellite cells spring into action when a protein on the cell surface called Notch becomes activated, much like flicking the cell’s molecular "on" switch. What flips the switch is another protein called Delta, which is made on nearby cells in injured muscle. This same combination of Delta and Notch also plays a role in guiding cells through embryonic development.

Having found this pathway, Rando and Conboy wondered whether slow healing in older muscles resulted from problems with signaling between Delta and Notch - failing either to make enough Delta or to respond to the Delta signal.

In their initial experiments, Rando and Conboy found that young, middle-aged and older mice all had the same number of satellite cells in their muscles and that these cells contained equivalent amounts of Notch.

"It doesn’t seem as if there’s anything wrong with the satellite cells or Notch in aged muscle," Rando said. That left Delta as the suspect molecule.

To test whether older muscles produce normal amounts of Delta, the researchers looked at the amount of protein made by mice of different ages. Young and adult mice, equivalent to about 20- and 45-year-old humans, both had a large increase in Delta after an injury. Muscles in older mice, equivalent to a 70-year-old human, made much less Delta after an injury, giving a smaller cry for help to the satellite cells. In response, fewer satellite cells were activated to repair the muscle damage.

A further set of experiments showed that slow repair in older muscles can be overcome. When the team applied a molecule to young muscles that blocked Delta, those satellite cells failed to divide in response to damage. Conversely, when they applied a Delta-mimicking molecule to injured, older muscles, satellite cells began dividing much like the those in younger muscle. The older muscles with artificially activated satellite cells had a regenerative ability comparable to that of younger muscle.

Although the studies focused on muscle regeneration after injury, Rando said similar problems with the interplay between Delta and Notch may cause the gradual muscle atrophy that occurs in older people, in astronauts or in people whose limbs are immobilized in a cast or from bed rest.

"If you presume that normal muscle bulk is maintained by gradual replacement of muscle tissue by satellite cells and that gradual replacement is diminished in older people, that would lead to atrophy," Rando said. "Figuring out atrophy in one of the pathways could relate to the others."

Rando said his team still needs to learn what signals normally cause the muscle to produce Delta, why those signals fail in older muscles and whether that change is reversible.


Other Stanford researchers involved in the study are postdoctoral scholars Michael Conboy, PhD, and Gayle Smythe, PhD.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at 650-723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht A new method of tooth repair? Scientists uncover mechanisms to inform future treatment
09.08.2019 | University of Plymouth

nachricht Take a break! Brain stimulation improves motor learning
08.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>