Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New prospects for treating muscular dystrophy: Stem cells restore muscle in MD mice

11.07.2003


A study on mice suggests that a type of stem cells found in blood vessels may someday be able to regenerate wasting muscle in muscular dystrophy (MD) patients.



The authors caution that more research must be done before researchers consider applying these findings to humans. Nonetheless, their results provide a possible new direction for efforts that have met largely with frustration thus far. The study appears in the journal Science, published by AAAS, the science society.

The research team, led by Giulio Cossu of the Stem Cell Research Institute, in Milan, and the University of Rome and the Institute of Cell Biology and Tissue Engineering, in Rome, has found that these stem cells can cross from the bloodstream, into muscle tissue. There, they seem to take on a new identity, helping to generate new muscle fibers in mice with MD-like symptoms.


MD is a collection of disorders caused by genetic defects that lead to increasing muscle weakness over time. These disorders currently have no cure.

"Although these results are exciting, we have not cured the mice," Cossu said. "We believe this is a significant step toward therapy, but the question that keeps me awake at night is whether this will work in larger animals."

Cossu’s team conducted its experiments on mice with the same genetic defect that causes one form of MD in humans. If the same stem cells, called "mesoangioblasts," can be collected from human MD patients, and if the cells have the same versatility they do early in life, they may offer a new avenue for treating the disease.

The approach Cossu and his colleagues are envisioning would involve collecting mesoangioblasts from a patient’s blood vessels, genetically "correcting" the cells in the laboratory, allowing them to multiply, and then injecting the cells back into the patient’s bloodstream. The cells would then migrate to the patient’s muscles, and begin producing healthy muscle cells.

Because the cells would be from the patient’s own body, his or her immune system wouldn’t reject them.

Trying to find a therapy for MD "has been a long and frustrating series of exploits," said Cossu.

"There is this problem of delivering the cells, or in the case of gene therapy, the viral vector, to all of the muscles. If you could go through the circulatory system, you would have a way to homogeneously deliver the cells or the vector to all the muscle fibers," he said.

Several key issues must be answered before such a therapy can be developed for humans, according to the Science authors.

First, these particular stem cells are fairly new to scientists. Cossu and his colleagues discovered them approximately a year ago, and are still learning how to identify them and how they function in the body. Thus far, Cossu’s team has only isolated human mesoangioblasts from fetal blood vessels.

More research is also needed for the "genetic correction" step of the therapy, which involves inserting the healthy version of a gene into the stem cell. The lentivirus Cossu used for delivering the gene in his mouse study provided the efficiency the researchers needed, but poses serious safety concerns for humans. Whether the safer retrovirus would be up to the task must still be determined.

When Cossu and his colleagues first identified mesoangioblasts last year, they determined that these cells could differentiate into a variety of cell types, including blood, bone, muscle, and connective tissue. They also found that the cells migrated outside the blood vessel, in response to inflammation.

For the current study, the researchers injected mesoangioblasts into the arteries of mice lacking the alpha sarcoglycan gene. This gene is one of several that, when defective, cause a type of MD called limb-girdle muscular dystrophy.

The researchers detected a significant portion of the normal mesoangioblasts in the muscles downstream of the injected artery. They also experimented with genetically modified mesoangioblasts, restoring healthy versions of alpha sarcoglycan gene to the cells. Three months after a single injection, they found healthy alpha sarcoglycan proteins in the muscles of the treated mice.

When Cossu’s group examined the mice, they found that the treated muscles contained larger and more numerous and apparently normal muscle fibers. The treated animals were also able to walk on a rotating wheel for longer than untreated animals, although not as long as healthy mice.

"I’m convinced this is an important result, but this is still not the therapy -- for the mice or for patients," Cossu said.


Giulio Cossu’s co-authors are Maurilio Sampaolesi, Anna Innocenzi, Rossana Tonlorenzi, and M. Gabriella Cusella De Angelis of the Stem Cell Research Institute in Milan, Italy; M.G.C. De Angelis is also at the University of Pavia, in Pavia, Italy; Yvan Torrente and Nereo Bresolin of Ospedale Maggiore Policlinico, in Milan, Italy; N. Bresolin is also at Istituto E. Medea, Bosisio Parini, in Lecco, Italy; M. Antonietta Pellegrino and Roberto Bottinelli at University of Pavia, in Pavia Italy; and Rita Barresi and Kevin P. Campbell at Howard Hughes Medical Institute and the University of Iowa, in Iowa City, IA. The study was supported by Telethon/Fondazione Zegna, the European Community, Duchenne Parent Project Italia/Compagnia di San Paolo, Muscular Dystrophy Association, Fondazione Istituto Pasteur-Cenci Bolognetti, Associazione Italiana Ricera sul Cancro (AIRC), Agenzia Spaziale Italiana (ASI) and the Italian Ministry of Health.

Ginger Pinholster | EurekAlert!
Further information:
http://www.aaas.org/

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>