Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New prospects for treating muscular dystrophy: Stem cells restore muscle in MD mice

11.07.2003


A study on mice suggests that a type of stem cells found in blood vessels may someday be able to regenerate wasting muscle in muscular dystrophy (MD) patients.



The authors caution that more research must be done before researchers consider applying these findings to humans. Nonetheless, their results provide a possible new direction for efforts that have met largely with frustration thus far. The study appears in the journal Science, published by AAAS, the science society.

The research team, led by Giulio Cossu of the Stem Cell Research Institute, in Milan, and the University of Rome and the Institute of Cell Biology and Tissue Engineering, in Rome, has found that these stem cells can cross from the bloodstream, into muscle tissue. There, they seem to take on a new identity, helping to generate new muscle fibers in mice with MD-like symptoms.


MD is a collection of disorders caused by genetic defects that lead to increasing muscle weakness over time. These disorders currently have no cure.

"Although these results are exciting, we have not cured the mice," Cossu said. "We believe this is a significant step toward therapy, but the question that keeps me awake at night is whether this will work in larger animals."

Cossu’s team conducted its experiments on mice with the same genetic defect that causes one form of MD in humans. If the same stem cells, called "mesoangioblasts," can be collected from human MD patients, and if the cells have the same versatility they do early in life, they may offer a new avenue for treating the disease.

The approach Cossu and his colleagues are envisioning would involve collecting mesoangioblasts from a patient’s blood vessels, genetically "correcting" the cells in the laboratory, allowing them to multiply, and then injecting the cells back into the patient’s bloodstream. The cells would then migrate to the patient’s muscles, and begin producing healthy muscle cells.

Because the cells would be from the patient’s own body, his or her immune system wouldn’t reject them.

Trying to find a therapy for MD "has been a long and frustrating series of exploits," said Cossu.

"There is this problem of delivering the cells, or in the case of gene therapy, the viral vector, to all of the muscles. If you could go through the circulatory system, you would have a way to homogeneously deliver the cells or the vector to all the muscle fibers," he said.

Several key issues must be answered before such a therapy can be developed for humans, according to the Science authors.

First, these particular stem cells are fairly new to scientists. Cossu and his colleagues discovered them approximately a year ago, and are still learning how to identify them and how they function in the body. Thus far, Cossu’s team has only isolated human mesoangioblasts from fetal blood vessels.

More research is also needed for the "genetic correction" step of the therapy, which involves inserting the healthy version of a gene into the stem cell. The lentivirus Cossu used for delivering the gene in his mouse study provided the efficiency the researchers needed, but poses serious safety concerns for humans. Whether the safer retrovirus would be up to the task must still be determined.

When Cossu and his colleagues first identified mesoangioblasts last year, they determined that these cells could differentiate into a variety of cell types, including blood, bone, muscle, and connective tissue. They also found that the cells migrated outside the blood vessel, in response to inflammation.

For the current study, the researchers injected mesoangioblasts into the arteries of mice lacking the alpha sarcoglycan gene. This gene is one of several that, when defective, cause a type of MD called limb-girdle muscular dystrophy.

The researchers detected a significant portion of the normal mesoangioblasts in the muscles downstream of the injected artery. They also experimented with genetically modified mesoangioblasts, restoring healthy versions of alpha sarcoglycan gene to the cells. Three months after a single injection, they found healthy alpha sarcoglycan proteins in the muscles of the treated mice.

When Cossu’s group examined the mice, they found that the treated muscles contained larger and more numerous and apparently normal muscle fibers. The treated animals were also able to walk on a rotating wheel for longer than untreated animals, although not as long as healthy mice.

"I’m convinced this is an important result, but this is still not the therapy -- for the mice or for patients," Cossu said.


Giulio Cossu’s co-authors are Maurilio Sampaolesi, Anna Innocenzi, Rossana Tonlorenzi, and M. Gabriella Cusella De Angelis of the Stem Cell Research Institute in Milan, Italy; M.G.C. De Angelis is also at the University of Pavia, in Pavia, Italy; Yvan Torrente and Nereo Bresolin of Ospedale Maggiore Policlinico, in Milan, Italy; N. Bresolin is also at Istituto E. Medea, Bosisio Parini, in Lecco, Italy; M. Antonietta Pellegrino and Roberto Bottinelli at University of Pavia, in Pavia Italy; and Rita Barresi and Kevin P. Campbell at Howard Hughes Medical Institute and the University of Iowa, in Iowa City, IA. The study was supported by Telethon/Fondazione Zegna, the European Community, Duchenne Parent Project Italia/Compagnia di San Paolo, Muscular Dystrophy Association, Fondazione Istituto Pasteur-Cenci Bolognetti, Associazione Italiana Ricera sul Cancro (AIRC), Agenzia Spaziale Italiana (ASI) and the Italian Ministry of Health.

Ginger Pinholster | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>