Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first gene therapy for cystic fibrosis targets lung stem cells?

21.10.2002


PhD student Maria Limberis inspects a CF mouse


The genetically – inherited disease cystic fibrosis causes severe, unrelenting lung disease in children and adults worldwide. Approximately 1 in 2,500 infants are born with this disease and only half survive past 30 years of age.

Now, researchers from the Women’s and Children’s Hospital, Adelaide have developed a novel system of gene therapy for lungs affected by cystic fibrosis, involving a natural compound found in our lungs which ’conditions’ lung airways to allow cells to take up the therapeutic gene.

Our lungs have developed highly effective ways to protect us from allergens, irritants, dust, viruses and other foreign particles. But according to principal medical scientist in Pulmonary Medicine, Dr David Parsons these defences also hinder effective gene therapy in our lungs.



"Using a mouse model of cystic fibrosis Maria Limberis, a PhD student in our lab, has helped us develop a system to briefly overcome these defences. As the cells lining the mouse nose behave in much the same way as human lung cells – this enables us to use the nose airways in mice to easily develop and test out gene therapy treatments.

"By instilling a single dose of a detergent found naturally in low amounts in our lungs, we are able to ’condition’ cells to take up the gene needed to treat cystic fibrosis.

" Viruses are very good at transferring their genetic material into cells and we make use of this by getting useful parts of an inactive and highly-modified human immunodeficiency virus type 1 (HIV 1) to safely transfer the cystic fibrosis gene into cells. We use this modified HIV because it is one of the few viruses that can give long-lasting gene transfer," Dr Parsons says.

Using this system, the research team has shown, for the first time in a living animal, that long-lived gene therapy for cystic fibrosis is possible. Not only do the airway cells take up the correcting gene, but these cells also show substantial recovery from the cystic fibrosis defect for, so far, at least 110 days.

"Airway cells are replaced every three months so our findings are particularly exciting because they imply we are in fact targeting airway stem cells through this approach - some of the therapeutic gene must have been passed on from these parent stem cells to their daughter cells for the effect to persist beyond three months," Dr Parsons says.

Research funding is now being sought to establish the most effective dose and timing for giving the detergent together with rigorous safety checks on the highly modified HIV-1 based virus particle used for the gene transfer.

Another senior member of the team, molecular biologist Dr Don Anson, explains, "Last year we published a method which vastly increases the safety with which HIV-1 can be modified and used to transfer genes without causing disease.

"We are now working to further improve on this method in order that patients and their families will feel totally confident to eventually take part in human trials of this gene therapy for cystic fibrosis," Dr Anson says.


The work from this research is to be published in Human Gene Therapy, volume 13 #16 on October 20.

Members of the Research Team are:
Dr David Parsons (Medical Scientist, Pulmonary Medicine)
Dr Don Anson (Senior Molecular Biologist, Chemical Pathology)
Dr Maria Fuller (Molecular Biologist, Chemical Pathology)
Ms Maria Limberis (PhD student, Pulmonary Medicine)

Dr Edna Bates | EurekAlert!
Further information:
http://www.wch.sa.gov.au/

More articles from Health and Medicine:

nachricht Experiments in mice and human cells shed light on best way to deliver nanoparticle therapy for cancer
26.03.2020 | Johns Hopkins Medicine

nachricht Too much salt weakens the immune system
26.03.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>