Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New EU project in the field of lipidomics promotes translational research towards human disease

21.08.2008
The enormous advances in biology and biomedical research during the last decade originate mainly from the fields of Genomics and Proteomics.

The current revolution in lipid analysis, however, promises change. For the first time the methodological possibilities are available to map the entire spectrum of lipids in cells, tissues and whole organisms.

Europe has so far played a pioneering and leading role in the biochemistry and analysis of lipids and most of the leading mass spectrometry providers are European companies. These mass spectrometry based nano-scale and high throughput technologies combined with molecular imaging and modern information technology will certainly revolutionize our understanding of the complex interaction networks in a functioning cell and how lipids together with genes and proteins determine cellular functions in health and disease.

Lipids are central to the regulation and control of cellular processes by acting as basic building units for biomembranes, the platforms for the vast majority of cellular functions. Recent developments in lipid mass spectrometry have set the scene for a completely new way to understand the composition of membranes, cells and tissues in space and time by allowing the precise identification and quantification of alterations of the total lipid profile after specific perturbations. In combination with advanced proteome and transcriptome analysis tools and novel imaging techniques using RNA interference, it is now possible to unravel the complex network between lipids, genes and proteins in an integrated lipidomics approach.

LipidomicNet addresses lipid droplets (LD) as dynamic organelles with regard to composition, metabolism and regulation. Lipid storage in multiple cells and tissues leads to transdifferentiation of multiple organs creating, fatty liver, obesity, white muscle and macrophage foam cells which are the hallmark of all energy overload diseases. LD also play a crucial role in HCV infection, a leading cause of liver disease that will continue to be a major health burden for the foreseeable future. This is why this organelle is in the focus of our project.

The project exploits recent advances in lipidomics technology to establish high-throughput methods to define drugable targets and novel biomarkers related to LD lipid and protein species, their interaction and regulation during assembly, disassembly and storage. The research groups study lipid protein interactions and investigate the dynamics of fat deposition and release in relevant cells as a hallmark of energy overload diseases with major health care impact in Europe.

Translational research from mouse to man applied to LD pathology is a cornerstone of this project at the interface between research and development. To maximize the value of the assembled data generated throughout the project, “LipidomicNet” (www.lipidomicnet.org) as a detailed special purpose Wiki format data base will be developed and integrated into the existing Lipidomics Expertise Platform (LEP) established through the SSA ELife project (www.lipidomics-expertise.de). ELife collaborates with the NIH initiative LIPID MAPS (www.lipidmaps.org) and the Japanese pendant Lipidbank (www.lipidbank.jp) and is connected to the Danubian Biobank consortium (SSA DanuBiobank, www.danubianbiobank.de) for clinical lipidomics.

LipidomicNet builds on a private public partnership (PPP) in order to support the translation of LipidomicNet inventions into new technologies and products that will benefit the health care systems. The 5 SMEs BIOBASE (www.biobase.de), ISB (www.systemsbiology.ru), ZORA Biosciences (www.zora.fi), Integromics (www.integromics.com) and Protagen (www.protagen.de) have been selected as PPP-partners between academia and industry because of their core competence necessary for LipidomicNet.

The EU-funded consortium of 21 European research groups and the 5 SMEs have recognized the utmost importance of promoting Lipidomic research, to attract the best young investigators to this newly forming research area to safeguard Europe’s vital interests in this important area and to ensure successful competition with the USA and Asia. Funding LipidomicNet in the field of Lipidomics will unequivocally be of benefit for areas such as health, nutrition and disease management.

Juergen Jonas | alfa
Further information:
http://www.lipidomicnet.org

Further reports about: HCV infection Lipidomic Mass spectrometry RNA interference fatty liver

More articles from Health and Medicine:

nachricht New method uses just a drop of blood to monitor lung cancer treatment
19.10.2018 | Osaka University

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>