Fish cancer gene linked to pigment pattern that attracts mates

Though skin cancer is deadly to male fish, it also has one perk: The black melanoma splotches arise from attractive natural markings that lure female mates.

A new study published in the Proceedings of the National Academy of Sciences this week shows that the melanoma gene can be conserved in swordtail fish because of its beneficial role in sexual selection.

Ohio University scientists André Fernandez and Molly Morris studied three populations of female swordtails, tiny freshwater fish native to North and Central America, and found that two of them preferred males whose tails were painted to resemble the skin cancer spots. The researchers also examined specimens of swordtail fish with real melanomas, which confirmed that the cancer gene is switched on only in the tissue with the dark pigment. The study marks the first time scientists have found a cancer gene linked to a pigment pattern that functions to increase mating success in animals.

In the current study, the researchers placed a female swordtail in the middle of a tank with two partitions. They positioned a male with the faux pattern from which melanomas form on one side, and a male without the pattern on the other. After releasing the female from an opaque tube into the tank's center chamber, the scientists observed how much time she spent looking at each male during an eight-minute period. The project builds on previous studies in the Morris lab, which used the same tests to show that female swordtails are strongly attracted to males with dark vertical bars.

To avoid any bias the female might have for a particular side of the tank, Fernandez then switched the males. Two days later, he conducted the trials again, this time changing which male received the painted skin cancer spot. The female consistently chose the male with the dark pigmented marking in two of the three populations, he said.

But the research suggests that the swordtail fish population also keeps the prevalence of the cancer gene in check. A third population of females in the study rejected the males painted with the pattern that can form melanomas. The scientists suspect that's because the third group had a higher ratio of both males and females with the gene for skin cancer, which increases the likelihood of too many offspring inheriting the gene and dying off.

Swordtail fish usually live for 1.5 to 2 years in the wild and sexually mature at 4.5 months. The ones with the skin cancer gene can develop melanomas at about 7 months and die a few months later.

“Melanoma formation cuts the reproductive life cycle in half,” Fernandez said. “It has a huge cost for males.”

But during the few months when the male is sexually mature and healthy, he also can produce a lot of offspring, he noted.

The swordtail melanoma has been studied since the 1920s, and scientists previously believed that fish developed the cancer only in captivity. But in the recent study, 10 percent of the swordtails collected from the third population in Mexico also exhibited the disease, said Fernandez, who joins the University of Texas M.D. Anderson Cancer Center this fall as a postdoctoral fellow. He hopes to conduct further studies on the habitat, such as whether stronger exposure to the sun's UV rays might be driving more instances of skin cancer in the wild.

Media Contact

Andrea Gibson EurekAlert!

Weitere Informationen:

http://www.ohio.edu

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

High-thermoresistant biopolyimides become water-soluble like starch

This is the first report for the syntheses of water-soluble polyimides which are Interestingly derived from bio-based resources, showing high transparency, tunable mechanical strength and the highest thermoresistance in water-soluble…

Land management in forest and grasslands

How much can we intensify? A first assessment of the effects of land management on the links between biodiversity, ecosystem functions and ecosystem services. Ecosystem services are crucial for human…

A molecular break for root growth

The dynamic change in root growth of plants plays an important role in their adjustment to soil conditions. Depending on the location, nutrients or moisture can be found in higher…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close