Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water or Land? Plants control their photosynthesis similarly, regardless of their origin


Plants carry out photosynthesis and thus form the basis for most life on earth. Researchers from Kaiserslautern and Potsdam have now investigated whether the production of photosynthesis proteins in land plants and algae differs. To do so, they examined translation; this is the process by which the genetic information is converted into proteins. They have discovered that all plants produce the same amounts of major proteins involved in photosynthesis, but in some cases based on different strategies. The result shows how important these proteins are for plants, regardless of their habitat. The findings of the study can help to make crop plants more resistant to climate change.

The study was published in the journal “Nature Plants”.

In photosynthesis, plants produce carbohydrates from CO2 using light. During this process, they also release oxygen. This biochemically complex process takes place in chloroplasts, small green organelles with their own genome. “It also contains the genes of the proteins involved in photosynthesis,” said assistant professor Dr Felix Willmund from the group of Molecular Genetics of Eukaryotes at the Technische Universität Kaiserslautern.

The microscopic image shows a chloroplast in which the photosynthesis takes place.

Credits: Dr. Alexander Hertle, MPI für Molekulare Pflanzenphysiologie

Assistant Professor Dr Felix Willmund

Credits: TUK

In order to “convert” this genetic information into proteins, the first step is to copy the genetic material into a transcript, termed ribonucleic acid (RNA). “The transcript serves as a kind of blueprint with the help of which large molecule complexes, the so-called ribosomes, assemble proteins from individual amino acids,” says lead author Dr Raphael Trösch, who is part of the Willmund research group on the Kaiserslautern campus. This process is also known as translation.

In the current study, Trösch and Willmund together with colleagues around Dr Reimo Zoschke from the Max Planck Institute for Molecular Plant Physiology (MPI-MP) in Potsdam-Golm investigated whether there are differences between land plants and algae that are far apart in evolutionary history. They compared these molecular processes in green algae, tobacco plants and Arabidopsis thaliana using a new method. They applied the so-called ribosome profiling.

In this method, the researchers take a look at the RNA and ribosomes present during translation. Similar to a footprint, ribosomes leave traces on the RNA that allow scientists to create a characteristic image that shows them which proteins are produced in what quantities.

The clue is as follows: “This technique provides us with an overview of the entire translation process, but we can also take a closer look at details,” said Zoschke, who heads the Translational Regulation in Plants working group at the MPI-MP.

“For all three plant species, we found that the same amounts of proteins are formed during translation that play a role in photosynthesis,” explains Zoschke. However, the researchers have also found that there are differences in the molecular processes that occur before and during translation. “Nevertheless, over the course of evolution, the different plants have developed mechanisms to produce the same photosynthesis components in equal amounts during translation,” says Willmund. “This shows the central importance of these molecules.”

The studies took place in the Collaborative Research Centre (SFB Transregio TRR175) “The Green Hub – Central Coordinator of Acclimation in Plants”. It has been funded by the German Research Foundation since 2016. Research teams from Berlin, Potsdam-Golm, Munich, and Kaiserslautern are investigating how plants can adapt to changing environmental conditions.

The results of the current study also show that plants succeeded with different strategies in achieving a very similar photosynthesis process despite different living conditions. It is therefore important to investigate such fundamental processes in order to better understand which mechanisms plants use to cope with environmental influences such as strong changes in temperature or light, for example. In the future, this knowledge will help to make crop plants more resistant to climate change.

The study was published in the renowned journal “Nature Plants”:
“Commonalities and differences of chloroplast translation in a green alga and land plants”
DOI: 10.1038/s41477-018-0211-0

Questions can be directed to:
Assistant Professor Dr Felix Willmund
Molecular Genetics of Eukaryotes / TU Kaiserslautern
Phone: +49(0)631 205-3254
E-mail: willmund(at)

Dr Reimo Zoschke
Translational regulation in plants
Planck Institute of Molecular Plant Physiology
Phone: +49(0)331 567-8375
E-mail: zoschke(at)

Wissenschaftliche Ansprechpartner:

Assistant Professor Dr Felix Willmund
Molecular Genetics of Eukaryotes / TU Kaiserslautern
Phone: +49(0)631 205-3254
E-mail: willmund(at)

Dr Reimo Zoschke
Translational regulation in plants
Planck Institute of Molecular Plant Physiology
Phone: +49(0)331 567-8375
E-mail: zoschke(at)


Nature Plants: Commonalities and differences of chloroplast translation in a green alga and land plants
Raphael Trösch, Rouhollah Barahimipour, Yang Gao, Jesús Agustín Badillo-Corona, Vincent Leon Gotsmann, David Zimmer, Timo Mühlhaus, Reimo Zoschke &
Felix Willmund
DOI: 10.1038/s41477-018-0211-0

Melanie Löw | Technische Universität Kaiserslautern

More articles from Life Sciences:

nachricht Hidden dynamics detected in neuronal networks
23.07.2019 | Forschungszentrum Juelich

nachricht Towards a light driven molecular assembler
23.07.2019 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>