Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual Reality Sheds New Light on How We Navigate in the Dark

15.06.2015

As everyone who has gotten up in the middle of the night to go to the bathroom knows, the brain maintains a sense of place and a basic ability to navigate that is independent of external clues from the eyes, ears and other senses.

A series of immersive virtual reality experiments has now confirmed that the human brain’s internal navigation system works in the same fashion as the grid cell system, a specialized neural network discovered in rats only 10 years ago, which has since been identified in a number of other mammals, including mice, bats and monkeys.


John Russell, Vanderbilt University

Graduate student Qiliang He performing a navigation trial with the assistance of Professor Timothy McNamara in Vanderbilt's Virtual Simulation Laboratory.

The experiments were performed by a research team headed by Timothy McNamara, professor of psychology at Vanderbilt University, and described in the June 29 issue of the journal Current Biology.

Questions about the brain’s ability to navigate have engaged philosophers and scientists for a long time. For example, the 18th century philosopher Immanuel Kant argued that perception of place was an innate ability independent of experience. In 1948 American experimental psychologist Edward Tolman proposed that the brain must maintain a map-like representation of its surroundings.

But it wasn’t until the 1970’s that an English scientist, John O’Keefe, found where this map-like representation was hidden in the brain when he discovered the existence of “place cells” in the hippocampus. Place cells are specialized neurons that become active whenever a free roaming rat reaches a specific location in its environment. Because different place cells become active when the animal is in different places, large numbers of these cells could provide the basis of the spatial representation Tolman had proposed.

In 2005, a team of Norwegian scientists headed by Edvard and May-Britt Moser discovered that place cells were only one part of a more sophisticated system that not only serves as the basis for spatial memory but also gives individuals their basic navigational sense. It is called the grid cell system and it is located in a narrow strip of tissue on the bottom of the brain called the entorhinal cortex. The EC acts as the main interface between the hippocampus and the neocortex.

By tracing connections from the place cells in the hippocampus to the EC and by moving their rats from small cages to larger enclosures, the Mosers discovered a set of neurons with an astonishing firing pattern. Instead of becoming active at the single location like place cells, they became active at several locations. When rats were allowed to explore these large enclosures for extended periods of time, it became apparent that the locations at which a particular grid cell was active formed a remarkably regular grid-like pattern, similar to honeycomb. As a result, they were named grid cells.

In 2014, O’Keefe and the Mosers received the Nobel Prize in Physiology or Medicine for their discoveries.

Since grid cells were identified in animals, researchers have found circumstantial evidence that humans have a similar navigation system. For example, direct recordings of nerve activity in the brains of patients with epilepsy during pre-surgical investigations have found evidence for place-like cells in the hippocampus and grid-like cells in the EC. However, other experiments, which found that individuals with damage to their hippocampus and EC can maintain their sense of direction while blindfolded, have raised questions about the extent to which humans depend on this part of the brain to navigate.

McNamara and his collaborators – Vanderbilt doctoral students Xiaoli Chen and Qiliang He, Jonathan Kelly from Iowa State University and Ila Fiete from the University of Texas, Austin – became interested in a series of experiments where the researchers had recorded how the rat’s grid cell system responds when the size of the its enclosure is altered. The researchers who performed the experiments found that the grid spacing increased when the enclosure was enlarged and decreased when the enclosure shrunk.

The activity of individual grid cells does not identify specific locations by themselves. But seven years ago Fiete showed mathematically that the activity patterns of collections of grid cells could be translated into unique spatial positions.

McNamara realized that they could perform some similar experiments for human participants using immersive virtual reality and apply Fiete’s model to see if the human navigation system operates in the same fashion as a grid-cell system.

Specifically, the researchers created virtual enclosures of different sizes, had participants walk to a series of way markers (colored columns of light that appear one at a time and disappear when a participant reaches them), blanked out their view, asked them to find their way directly back to the first marker and recorded how close they came to its position. The first few trials were conducted in an enclosure that remained the same size. For the final trial, however, they changed one of the dimensions by as much as 40 percent.

“In most cases, the participants don’t even notice that the size of the enclosure has changed,” said McNamara. “But, when it does change, the positions where they stop are significantly farther from the target than they are when the enclosure remains the same. When the enclosure increases in size they tend to undershoot and when it decreases they tend to overshoot.”

The amounts that the participants undershot and overshot were remarkably consistent with what the studies with rats and Fiete’s model predicted if the individuals were being guided by a grid-cell system that had been fixed by the dimensions of the original enclosure.

“We still can’t say for certain that people use a grid-cell system to navigate,” said McNamara. “But we can say that, if people use a different system, it seems to behave in exactly the same way.”

The research was supported by National Science Foundation grants HCC 0705863, MRI 0821640, EAGER 1148973 and the Office of Naval Research grant N000141310529.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

Contact Information
David Salisbury
Senior Research Writer
david.f.salisbury@vanderbilt.edu
Phone: 615-343-6803
Mobile: 615-715-6842

David Salisbury | Vanderbilt University

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>