Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TSRI chemists use modified DNA nucleotides to create new materials

12.10.2017

DNA evolved to store genetic information, but in principle this special, chain-like molecule can also be adapted to make new materials. Chemists at The Scripps Research Institute (TSRI) have now published an important demonstration of this repurposing of DNA to create new substances with possible medical applications.

TSRI's Floyd Romesberg and Tingjian Chen, in a study published online in the chemistry journal Angewandte Chemie, showed that they could make several potentially valuable chemical modifications to DNA nucleotides and produce useful quantities of the modified DNA. The chemists demonstrated their new approach by making a DNA-based, water-absorbing hydrogel that ultimately may have multiple medical and scientific uses.


Diagram of enzyme (orange) encapsulating 2'-azido-DNA/DNA hydrogel.

Courtesy Romesberg Lab

"DNA has some unique properties as a material, and with this new ability to modify it and replicate it like normal DNA, we can really begin to explore some interesting potential applications," said Romesberg, a professor of chemistry at TSRI.

Romesberg's laboratory over the past decade has helped pioneer methods for making modified DNA, with the ultimate goal of developing valuable new medicines, probes and materials -- even artificial life forms. The team reached an important milestone last year with a feat reported in Nature Chemistry: the development of an artificial DNA polymerase enzyme that can make copies of modified DNA, much as normal DNA polymerases replicate normal DNA.

The DNA modifications tested in that study involved only the attachment of fluorine (F) or methoxy (O-CH3) moieties to the sugar backbone of DNA nucleotides -- modifications that in principle would improve the properties of DNA-based drugs. In the new study, Chen and Romesberg demonstrated several other modifications that their polymerase SFM4-3 can replicate and, in so doing, opened the door to the design of modified DNA for a much broader range of applications.

One of the new modifications adds an azido group (N3), a convenient attachment point for many other molecules via a relatively easy set of techniques called "click chemistry," also pioneered at TSRI. The TSRI chemists showed that the SFM4-3 polymerase can replicate azido-modified nucleotides with adequate fidelity and can exponentially amplify strands of this modified DNA using a common laboratory method, polymerase chain reaction (PCR). Click chemistry can then be used to add any of a wide variety of different molecules to the DNA via the azido group.

"With the azido-DNA and click chemistry, we were able to produce highly functionalized DNA, including DNA modified with an intense concentration of fluorescent beacon molecules and DNA marked with a chemical handle called biotin," said Chen, who is a postdoctoral research associate in the Romesberg Laboratory.

The scientists in a more advanced demonstration used click chemistry to fasten multiple DNA strands to a central, azido-modified DNA strand, creating a "bottle brush" structure. They then used the assembly to amplify DNA via PCR to obtain a large mesh of DNA that--to their surprise -- formed a hydrogel when exposed to water.

"Hydrogels are a focus of great interest these days because they have a lot of potential applications, though there are relatively few ways for their controlled production," Romesberg said.

The new DNA-based hydrogel turned out to have some intriguing properties. Chen and Romesberg found that they could dissolve it with DNA-cutting enzymes and later reform it in any desired mold using DNA-joining enzymes, allowing them to form and reform the hydrogel with new stable structures. Test proteins placed within the hydrogel also retained their biochemical activity.

"We think this hydrogel can have applications ranging from novel forms of drug delivery to the growing of cells in three-dimensional cultures," Chen said.

The researchers demonstrated that the SFM4-3 polymerase also can be used to replicate and amplify DNA that has been modified with three other types of additions to the backbone sugar: a chloro (Cl) or amino (NH2) group, or a hydroxyl group (OH) that combines with the backbone to form an arabinose sugar.

Chen and Romesberg are now looking for additional DNA modifications that can be replicated using the SFM4-3 polymerase. At the same time, the researchers are pursuing specific applications of their modified DNA, including novel hydrogels.

"Given that DNA can have different sequences that impart different properties, we can even start to think about evolving nanomaterials with desired activities," Romesberg said.

###

The study, "Enzymatic synthesis, amplification, and application of DNA with a functionalized backbone," was supported by the U.S. Defense Advanced Research Projects Agency (N66001-14-2-4052).

Media Contact

Madeline McCurry-Schmidt
madms@scripps.edu
858-784-9254

 @scrippsresearch

http://www.scripps.edu 

Madeline McCurry-Schmidt | EurekAlert!

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>