Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transport of molecular motors into cilia

28.03.2017

Molecular motors produce the force that powers the beat of sperm cell tails to generate movement toward the egg cell for fertilization. New research now shows how the molecular motors that power the movement of sperm cells are recognized and specifically transported into the tail region of the cell. This knowledge can pave the way for a better understanding of disease causing mutations causing sterility.

Molecular motors use the molecule ATP as energy source to organize the inner life of cells. Dyneins are the largest and most complex molecular motors and are responsible for intracellular transport and for generation of the force required for motility of cilium organelles.


The picture at the top shows a sperm cell with the head (cell body) and tail (also known as flagellum or cilium) that propels the sperm cell forward. The schematic in the middle shows how dynein motors (yellow stars) are transported via intraflagellar transport (IFT) and periodically distributed. The picture at the bottom illustrates how the ODA16 structure functions as an adaptor between the transport system and the dynein motors.

Credit: Esben Lorentzen

Cilia are thin structures found on the surface of our cells where they function as sensors receiving signals from the environment and as motors causing the cell or the environment to move.

Motile cilia are found as a single copy on sperm cells and in multiple copies on cells in our lungs where they generate a fluid flow necessary for the removal of dust particles and pathogens from the airways.

The large dynein motors (known as 'outer dynein arms´, ODA) - that are necessary for the motility of cilia - are actively transported into cilia via the intraflagellar transport (IFT) system and the transport adaptor ODA16. Mutations in dynein motors or IFT factors can result in infertility and respiratory deficiency.

An international research team now mapped how dynein motors are recognized by the adaptor protein ODA16 and imported into cilia via the IFT system. The crystal structure of ODA16 shows how the largest barrel-like domain recognizes dynein motors and simultaneously binds the IFT complex via a cleft generated by the barrel domain and a smaller domain located on top of the barrel. ODA16 thus functions as a true adaptor between the large dynein and IFT complexes (see figure).

This new knowledge can pave the way for structure determination of IFT complexes associated with dynein motors via ODA16, which will lead to a deeper understanding of ciliary mechanisms and disease causing mutations in genes encoding dynein and IFT proteins.

The research team consists of Michael Taschner and Esben Lorentzen from the Department of Molecular Biology and Genetics, Aarhus University, Jérôme Basquin from the Max Planck Institute, Andre? Moura?o from the Helmholz Center (both in Munich, Germany) and Mayanka Awashti from Maryland University, USA.

The results are published in the scientific Journal of Biological Chemistry.

###

For further information, please contact

Associate Professor Esben Lorentzen
Department of Molecular Biology and Genetics
Aarhus University, Denmark
el@mbg.au.dk - +45 8715 5478

Media Contact

Esben Lorentzen
el@mbg.au.dk
45-87-15-54-78

 @aarhusuni

http://www.au.dk 

Esben Lorentzen | EurekAlert!

Further reports about: Biology Genetics Molecular Biology cilia dust particles dynein energy source sperm cells

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>