Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New super bacterium doubles hydrogen gas production

14.04.2010
Hydrogen gas is today used primarily for manufacturing chemicals, but a bright future is predicted for it as a vehicle fuel in combination with fuel cells.

In order to produce hydrogen gas in a way that is climate neutral, bacteria are added to forestry or household waste, using a method similar to biogas production. One problem with this production method is that hydrogen exchange is low, i.e. the raw materials generate little hydrogen gas.

Now, for the first time, researchers have studied a newly discovered bacterium that produces twice as much hydrogen gas as the bacteria currently used. The results show how, when and why the bacterium can perform its excellent work and increase the possibilities of competitive biological production of hydrogen gas.

"There are three important explanations for why this bacterium, which is called Caldicellulosiruptor saccharolyticus, produces more hydrogen gas than others. One is that it has adapted to a low-energy environment, which has caused it to develop effective transport systems for carbohydrates and the ability to break down inaccessible parts of plants with the help of enzymes. This in turn means it produces more hydrogen gas. The second explanation is that it can cope with higher growth temperatures than many other bacteria. The higher the temperature, the more hydrogen gas can be formed", summarises Karin Willquist, doctoral student in Applied Microbiology at Lund University. She will soon be presenting a thesis on the subject.

The third explanation is that the CS bacterium can still produce hydrogen gas even in difficult conditions, for example high partial hydrogen pressure, which is necessary if biological hydrogen gas production is to be financially viable.

On the other hand, the bacterium does not like high concentrations of salt or hydrogen gas. These affect the signalling molecules in the bacterium and, in turn, the metabolism in such a way that it produces less hydrogen gas.

"But it is possible to direct the process so that salt and hydrogen gas concentrations do not become too high", points out Karin Willquist.

When hydrogen is used as an energy carrier, for example in car engines, water is the only by-product. However, because the hydrogen gas production itself, if it is carried out by a conventional method, consumes large amounts of energy, hydrogen gas is still not a very environmentally friendly energy carrier.

Reforming of methane or electrolysis of water are currently the most common ways to produce hydrogen gas. However, methane gas is not renewable and its use leads to increased carbon dioxide emissions. Electrolysis requires energy, usually acquired from fossil fuels, but also sometimes from wind or solar power. Hydrogen gas can also be generated from wind power, which is an environmentally friendly alternative, even if wind power is controversial for other reasons.

"If hydrogen gas is produced from biomass, there is no addition of carbon dioxide because the carbon dioxide formed in the production is the same that is absorbed from the atmosphere by the plants being used. Bio-hydrogen gas will probably complement biogas in the future", predicts Karin Willquist.

Today there are cars that run on hydrogen gas, e.g. the Honda FCX, even if they are few in number. The reason for this is that it is too expensive to produce hydrogen gas and there is no functioning hydrogen infrastructure.

"A first step towards a hydrogen gas society could be to mix hydrogen gas with methane gas and use the existing methane gas infrastructure. Buses in Malmö, for example, drive on a mixture of hydrogen gas and methane gas", says Karin Willquist.

Caldicellulosiruptor saccharolyticus was isolated for the first time in 1987 in a hot spring in New Zealand. It is only recently that researchers have really begun to realise the potential of the bacterium.

or more information, please contact Karin Willquist, doctoral student, Applied Microbiology, +46 (0)46 222 06 49, +46 (0)735 37 55 68, Karin.Willquist@tmb.lth.se,

Supervisor Ed van Niel, Senior Lecturer in Applied Microbiology, +46 (0)46 222 0619, Ed.van_Niel@tmb.lth.se.

Pressofficer Kristina Lindgärde; kristina.lindgarde@kansli.lth.se; +46-709 75 35 00

Kristina Lindgärde | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>