Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stable MHC proteins for cancer immunotherapy: Innovation from Jacobs University facilitates novel treatment methods

25.07.2019

In the treatment of cancer, the most promising innovation in the last years has been tumor immunotherapy. In the immunotherapy approach, which is now being tested in clinical trials, scientists and doctors ‘train’ the immune system of the patient to recognize the tumor and eliminate it, using – instead of drugs or surgery – the body’s own defences to overcome the disease.

A Jacobs University work group, led by Prof. Sebastian Springer, professor for Biochemistry and Cell Biology, has recently published two papers in the journal Science Immunology in collaboration with scientists from Germany and Denmark.


Sebastian Springer is Professor of Biochemistry and Cell Biology at Jacobs University

© Jacobs University

In these papers they introduced revolutionary new methods to accelerate tumor immunotherapy, to customize it to the individual patient, and to decrease the costs out of the procedure.

The innovations of the Jacobs researchers concern a group of proteins called the MHC (Major Histocompatibility Complex) proteins. They are present at the surface of all body cells, and serve as ‘flags’ for the immune system to recognize if a cell has turned into a tumor cell.

The T cells, white blood cells of the immune system, recognize the MHC proteins on the surface of a tumor cell with their T cell receptors, which enables the T cells to eliminate the tumor cell. This amazing property of the T cells is used for tumor immunotherapy.

For their work in diagnosis and therapy, doctors and researchers often need purified MHC proteins. They are used to test whether purified T cell receptors (which are used to direct drugs directly to tumor cells) react only with the tumor and not with healthy body tissues to make sure that the anti-tumor drugs have as few side effects as possible.

THE MHC proteins are furthermore used to detect the anti-tumor T cells of the cancer patient and to make sure that they are multiplying properly.

MHC proteins have been particularly difficult and tedious to produce which was a bottleneck in research and diagnosis. "Whenever a researcher needed MHC proteins, they had to ask an external company to produce them. And the necessary process took four to six weeks", explains Prof. Springer.

"Of course, this elaborate procedure caused major problems if doctors had a sick patient they needed to diagnose, or if researchers were following a really urgent scientific project. The problem was that every MHC protein contains a little piece of a tumor called a peptide, which varies from one patient to the other, and without this peptide, the MHC proteins were unstable and perished quickly, even if it was kept in the fridge."

In intensive work that spanned a decade, Springer identified a place in the MHC protein that could be stabilized by introducing a so-called disulfide bridge, a chemical crosslink that makes the MHC proteins more rigid. His collaborators at the Technical University of Denmark in Copenhagen, led by Prof. Sine Reker Hadrup, found that the stabilized MHC protein performed as well as the old reagent when used to detect T cells in patient samples, but amazingly, the production time was now speeded up from weeks to seconds, because the peptide could now be added to the diagnostic reaction at the very last moment.

“We were just amazed when we saw how well it worked”, says Springer. These results and the data are now being published in Science Immunology. Springer, Hadrup, two further researchers and Jacobs University already founded a company, Tetramer Shop, to produce and sell this innovative reagent. Researchers and pharma companies all over the world that work on T cell immunotherapy have shown a very high interest in the company.

In their second innovation that is now also published in Science Immunology, the Jacobs University researchers worked with the Tübingen company Immatics, who showed that the disulfide-stabilized MHC reagents are superior tools for testing T cell receptors that are used as reagents for the actual treatment of tumors. “Here, too, it was most important that the MHC reagents were stable and could be produced very rapidly. We are very excited that our technology has different uses, and we are certain that there will be many more uses,” says Springer.

“These inventions show that Jacobs University, based on its strength in fundamental science, can generate tailored scientific solutions for companies. We look forward to developing these relationships for mutual benefit”, resumes Prof. Dr. Michael Hülsmann, President of Jacobs University.

Licences to the disulfide stabilization technology for MHC proteins are available through the Tetramer Shop.

About Jacobs University Bremen:
Studying in an international community. Obtaining a qualification to work on responsible tasks in a digitized and globalized society. Learning, researching and teaching across academic disciplines and countries. Strengthening people and markets with innovative solutions and advanced training programs. This is what Jacobs University Bremen stands for. Established as a private, English-medium campus university in Germany in 2001, it is continuously achieving top results in national and international university rankings. Its more than 1,400 students come from more than 100 countries with around 80% having relocated to Germany for their studies. Jacobs University’s research projects are funded by the German Research Foundation or the EU Research and Innovation program as well as by globally leading companies.

For more information: www.jacobs-university.de
Facebook | Youtube | Twitter | Instagram | Weibo

Wissenschaftliche Ansprechpartner:

Sebastian Springer| Professor for Biochemistry and Cell Biology
s.springer@jacobs-university.de | Tel.: +49 421 200-3243

Originalpublikation:

Andreas Moritz, Raghavendra Anjanappa, Claudia Wagner, Sebastian Bunk, Martin Hofmann, Gabriele Pszolla, Ankur Saikia, Maria Garcia-Alai, Rob Meijers, Hans- Georg Rammensee, Sebastian Springer, and Dominik Maurer:
High-throughput peptide-MHC complex generation and kinetic screenings of TCRs with peptide-receptive HLA-A*02:01 molecules.
Science Immunology, in press (2019)

Sunil Kumar Saini, Tripti Tamhane, Raghavendra Anjanappa, Ankur Saikia, Sofie Ramskov, Marco Donia, Inge Marie Svane, Søren Nyboe Jakobsen, Maria Garcia- Alai, Martin Zacharias, Rob Meijers, Sebastian Springer, and Sine Reker Hadrup:
Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells
Science Immunology, in press (2019)

Weitere Informationen:

http://springergroup.user.jacobs-university.de
http://www.tetramer-shop.com

Melisa Berktas | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The impact of molecular rotation on a peculiar isotope effect on water hydrogen bonds
03.12.2019 | National Institutes of Natural Sciences

nachricht New treatment for brain tumors uses electrospun fiber
03.12.2019 | University of Cincinnati

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The impact of molecular rotation on a peculiar isotope effect on water hydrogen bonds

03.12.2019 | Life Sciences

SLAC scientists invent a way to see attosecond electron motions with an X-ray laser

03.12.2019 | Materials Sciences

Focused ultrasound may open door to Alzheimer's treatment

03.12.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>