Quantum uncertainty helps solve an old problem

Electrons in a 2D lattice interact with a magnetic field (blue arrows), and its quantum fluctuations via the exchange of photons (yellow), which changes how the electrons move through the lattice. Vasil Rokaj

Electrons moving in a strong magnetic field perform a circular motion due to the Lorentz force, on which electromagnetic induction and the electric motor are based.

In the quantum flatland of atomically thin two-dimensional materials, this leads to weird quantum effects like the integer and the fractional quantized Hall effects, which state that the number of Lorentz-deflected charges are not arbitrary but increase in discrete (quantized) steps.

Despite much progress in the field, the fundamental description of how electrons behave in magnetic fields has remained somewhat incomplete.

“There is a deep problem here. Let’s say I have a giant magnetic coil and generate a field that is the same everywhere in space, the electrons in my quantum sheet should feel the same force everywhere,” says Vasil Rokaj, PhD student in the MPSD Theory Department and lead author of the study. “But standard textbooks treating the magnetic field classically, fail to account for this physical requirement,” he adds.

With a team of researchers led by MPSD Theory Director Angel Rubio and group leaders Michael Ruggenthaler and Michael Sentef, Rokaj and co-author Markus Penz set out to derive new equations that would cure this shortcoming.

“We did not know originally what to expect,” adds Ruggenthaler. “In fact, we were interested in a different problem, namely how a quantized rather than classical field in a so-called cavity affects the electronic motion.”

To achieve this, Rokaj had to use the formalism of quantum electrodynamics, which was first developed in the 1930s and 1940s to describe how electrons and photons interact. When Rokaj wrote down the equations for the electrons in the solid, the team realized that something interesting happened.

“The magnetic field in a coil is composed of photons, so in principle we should be able to also describe the old problem with our new approach,” says Ruggenthaler. “Surprisingly, the quantum uncertainty (or fluctuations) of the field, which is usually not taken into account, helps to restore the fundamental symmetry – that everything should be the same no matter where in space we look.”

Angel Rubio adds: “These efforts prove that we are on the right track by tackling the problem in a fully quantum way.” In his Theory Department, many researchers work on the large-scale problem of how photons change the properties of matter – from novel chemical reactions to materials that might help build future quantum computers.

“This work proves that it is always worthwhile to take a fresh look at old problems, and to start from the basic principles,” says Rubio. “I am sure that further surprises are just waiting to be discovered.”

Vasil Rokaj, M.Sc.
MPSD/CFEL, IMPRS-UFAST
Phone: +49 (0)40 8998 88331
Email: vasil.rokaj@mpsd.mpg.de

Dr. Michael Ruggenthaler
Group Leader
MPSD/CFEL
Phone: +49 (0)40 8998-88319
Email: michael.ruggenthaler@mpsd.mpg.de

Quantum Electrodynamical Bloch Theory with Homogeneous Magnetic Fields
Vasil Rokaj, Markus Penz, Michael A. Sentef, Michael Ruggenthaler, and Angel Rubio
Phys. Rev. Lett. 123, 047202 – Published 23 July 2019

https://doi.org/10.1103/PhysRevLett.123.047202 original publication

Media Contact

Dr. Joerg Harms Max-Planck-Institut für Struktur und Dynamik der Materie

Further information:

http://www.mpsd.mpg.de

All news from this category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Seawater as an electrical cable !?

Wireless power transfers in the ocean For drones that can be stationed underwater for the adoption of ICT in mariculture. Associate professor Masaya Tamura, Kousuke Murai (who has completed the…

Rare quadruple-helix DNA found in living human cells with glowing probes

New probes allow scientists to see four-stranded DNA interacting with molecules inside living human cells, unravelling its role in cellular processes. DNA usually forms the classic double helix shape of…

A rift in the retina may help repair the optic nerve

In experiments in mouse tissues and human cells, Johns Hopkins Medicine researchers say they have found that removing a membrane that lines the back of the eye may improve the…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close