Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop highly sensitive molecular optical pressure sensor

05.07.2018

Optical pressure measurements possible in solid state and in solution /
Molecular ruby for use in materials sciences or catalysis

Chemists at Johannes Gutenberg University Mainz (JGU) and at the Université de Montréal in Canada have developed a molecular system capable of very precise optical pressure measurements. The gemstone ruby served as the source of inspiration.


The molecular ruby in a solid (red) and dissolved (yellow) state can be used for contactless optical measurement of pressure.

photo/©: Sven Otto, JGU

However, the system developed by the team headed by Professor Katja Heinze at the JGU Institute of Inorganic Chemistry and Analytical Chemistry and Professor Christian Reber at the Université de Montréal is a water-soluble molecule, not an insoluble solid. Like the gemstone ruby, this molecule contains the element chromium that gives it its red color, which is why it has also been dubbed molecular ruby.

This molecular ruby can be used to measure pressure both in the solid state as the gemstone ruby and furthermore in solution thanks to its solubility. Thus, this molecular system has potential applications in the fields of materials sciences, homogeneous and heterogeneous catalysis, and all conceivable fields where pressure changes need to be monitored. The research findings have recently been published in Angewandte Chemie International Edition.

Measuring the pressure with the molecular ruby is very straightforward. The relevant site is irradiated with blue light to be absorbed by the molecular ruby, which then emits infrared radiation. Depending on the pressure, the energy of the emitted light varies in a very sensitive manner. The actual pressure can then be read from the luminescence energy.

The sophisticated pressure-dependent luminescence measurements up to 45,000 bar have been performed by Sven Otto, a doctoral candidate in Heinze's team, in the laboratories of the Reber group at the Université de Montréal. Sven Otto's research stay was funded by the Materials Science in Mainz (MAINZ) Graduate School of Excellence.

"The experimental work in Montréal was a great experience and the successful proof of concept was just fantastic," said Otto. "The highest pressures employed in a so-called diamond anvil cell are roughly 45 times higher than that experienced at the deepest known spot in the ocean", explained Otto.

"The very large effects observed with this molecular material are really stunning," added Profoessor Christian Reber, an expert in high-pressure luminescence spectroscopy and currently a DAAD guest scientist at Mainz University, funded by the German Academic Exchange Service. In fact, the effects are up to twenty times larger with the molecular ruby crystals than with the commonly employed gemstone ruby.

Chance for completely new applications

The principle of optical pressure measurements using chromium based materials is not new. However, up to now, all these materials are completely insoluble like ruby. Pressure measurements with a single type of dissolved molecular species reporting pressure changes directly in solution had not yet been achieved. "However, our molecular ruby can do the trick," said Professor Katja Heinze. "We hope that our findings will pave the way for completely different applications beyond the classical ones and we are currently working in this direction."

The research work is being funded by the German Research Foundation (DFG), the MAINZ Graduate School of Excellence, and the German Academic Exchange Service (DAAD). The DFG recently approved a new priority program SPP 2102 entitled "Light-controlled reactivity of metal complexes" coordinated by Professor Katja Heinze.

Image:
http://www.uni-mainz.de/bilder_presse/09_anorganische_chem_rubin_druck.jpg
The molecular ruby in a solid (red) and dissolved (yellow) state can be used for contactless optical measurement of pressure.
photo/©: Sven Otto, JGU

Publications:
Sven Otto et al., Molecular ruby under pressure, Angewandte Chemie International Edition, 2 July 2018,
DOI:10.1002/anie.201806755
http://onlinelibrary.wiley.com/doi/10.1002/anie.201806755/abstract

Sven Otto et al., [Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue, Angewandte Chemie International Edition, 12 August 2015,
DOI:10.1002/anie.201504894
http://onlinelibrary.wiley.com/doi/10.1002/anie.201504894/abstract

Contact:
Professor Dr. Katja Heinze
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25886
fax +49 6131 39-27277
e-mail: katja.heinze@uni-mainz.de
https://www.ak-heinze.chemie.uni-mainz.de/

Related links:
https://www.mainz.uni-mainz.de/ – Materials Science in Mainz (MAINZ) Graduate School of Excellence

Read more:
* http://www.uni-mainz.de/presse/aktuell/1802_ENG_HTML.php – press release "Scientists develop molecular thermometer for contactless measurement using infrared light" (4 June 2017) ;
* http://www.uni-mainz.de/presse/aktuell/1212_ENG_HTML.php – press release "Johannes Gutenberg University Mainz to coordinate new DFG priority program in photochemistry" (25 April 2017) ;
* http://www.uni-mainz.de/presse/17824_ENG_HTML.php – press release "Katja Heinze receives research award for intelligent food packaging with freshness indicator" (5 December 2014)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>