Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ATTO-TEC® Stable activated fluorescent dyes at room temperature (RT)

19.10.2001



ATTO-TEC® has developed the second generation of fluorescent dyes which are stable at room temperature for more than six months.

With Atto 520, Atto 565 and Atto 590 we are pleased to offer three stable fluorescent dyes as amine-reactive succinimidyl esters which will be available from November 2001 on. This allows researchers an easy handling for selectively target- labeling by linking a fluorophore to primary amine groups on proteins or modified nucleic acids.
Further stable activated fluorescent probes including Atto 610, Atto 655 and Atto 680 will be also available shortly.



ATTO-TEC® Stabile aktivierte fluoreszierende Farbstoffe bei Raumtemperatur

ATTO-TEC® hat die zweite Generation fluoreszierender Farbstoffe entwickelt. Die neuen Farbstoffe sind selbst bei Raumtemperatur für mehr als sechs Monate stabil.

Mit Atto 520, Atto 565 und Atto 590 bietet ATTO-TEC® erstmalig drei bei RT stabile Farbstoffe als aktivierte NHS-Ester an. Die Produkte sind ab November 2001 verfügbar. Dies ermöglicht den Anwendern die einfache Handhabung der Fluorophore bei der Markierung der gewünschten Zielmoleküle durch selektive Bindung des Farbstoffes an Aminogruppen von Proteinen und modifizierten Nukleinsäuren.
Weitere bei RT stabile aktivierte fluoreszierende Farbstoffe, insbesondere Atto 610, Atto 655 und Atto 680, werden in Kürze ebenfalls erhältlich sein.

| ATTO-TEC®

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>