Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation Responsible for Lung and Diaphragm Defects; Deconstructing the Genome of a Notorious Yeast

17.06.2005


Gene for lung and diaphragm development in mice and humans

To breathe normally, people need more than just healthy lungs. A diaphragm—the large muscle that creates a vacuum to draw air into their lungs—is also crucial. Birth defects in the diaphragm, such as congenital diaphragmatic hernia (which are about as common as cystic fibrosis), are often fatal. “A lot of people haven’t heard of this [disorder] because so many of the kids die early,” said Kate Ackerman, Harvard Medical School researcher and lead author of the study in PLoS Genetics.

To explore the genetic roots of these birth defects—hitherto a mystery—Ackerman and her colleagues screened mice with induced genetic mutations. The researchers discovered that a mutation in the mouse Fog2 gene can cause small lungs and abnormal diaphragm development. Could the same gene be involved in human diaphragmatic defects? After studying children with similar problems, the authors did indeed identify a child with a serious Fog2 gene mutation who died on the first day of life with severe breathing difficulties, small lungs, and an abnormal diaphragm.



“This is the first identified cause of [this type of] diaphragmatic defect,” Ackerman said. “And now we have a mouse model to try to learn more.” This discovery means that researchers now have an important genetic starting point to generate further insight into a poorly understood range of human disorders.

Citation: Ackerman KG, Herron BJ, Vargas SO, Huang H, Tevosian SG, et al. (2005) Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS
Genet 1(1): e10.

The published article will be accessible to your readers at: dx.doi.org/10.1371/journal.pgen.0010010

CONTACT:
Kate G. Ackerman
Brigham and Women’s Hospital
Harvard Medical School
Medicine
New Research Building 458
77 Avenue Louis Pasteur
Boston, MA USA 02115
+1-617-525-4761
+1-617-525-4751 (fax)
kackerman@rics.bwh.harvard.edu

********************************

Researchers deconstruct the genome of a notorious yeast species.

Yeast infections are often just a minor inconvenience, but in 30% of severe cases, they can lead to death. Candida albicans, the species that causes superficial cases of thrush and vaginitis, is responsible for many of these deaths. Most susceptible are premature infants, people with HIV, cancer patients, and organ transplant patients.

Andre Nantel and an international consortium of C. albicans experts have now essentially written the dictionary for the genome of this infamous yeast. Previous studies determined its DNA sequence and used simple automated methods to look for genes. But in this new study, forty-three scientists have collaborated to present a more meaningful and detailed annotation of the 6,354 genes in the genome. This comprehensive annotation will be a vital tool for the C. albicans research community and will help in developing improved diagnoses and therapies to treat C. albicans infections.

Citation: Braun BR, van het Hoog M, d’Enfert C, Martchenko M, Dungan J, et al. (2005) A human-curated annotation of the Candida albicans genome. PLoS Genet 1(1): e1.

The published article will be accessible to your readers at: dx.doi.org/10.1371/journal.pgen.0010001

CONTACT:
Andre Nantel
National Research Council of Canada
Biotechnology Research Institute
6100 Royalmount
Montreal, Canada QC H4P 2R2
+1-514-496-6370
+1-514-496-9127 (fax)
andre.nantel@nrc-cnrc.gc.ca

Paul Ocampo | alfa
Further information:
http://www.plosgenetics.org

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>