’Supersolid’ or melted ’superfluid’ film: A quantum difference

New calculations support an alternative to “superfluidity” of a solid as the explanation for the behavior of an isotope of helium, 4He, at temperatures approaching Absolute Zero, according to a report in Physical Review Letters.


Among the most provocative recent reports in condensed materials science were studies interpreting the behavior of solid 4He in an oscillating chamber as a “supersolid.” In this current paper, John S. Wettlaufer, professor of geophysics andphysics at Yale University, and his colleague J. G. Dash, emeritus professor of physics at University of Washington, offer another possible explanation.

“If you rotate a container of nearly-frozen liquid 4He, even gently, it does unusual things — hydrodynamically,” said Wettlaufer. Superfluidity has long been shown to occur as liquid 4He is cooled to within two degrees of Absolute Zero. In this state, the liquid can flow without any resistance; rotating in a container it can continue without slowing, as long as it is kept at the low temperature. The state is an effect of quantum physics known as Bose-Einstein condensation (BEC).

The possibility of BEC in solid 4He was a theoretical speculation for many years, so the reports of Professor Moses Chan and his student E.-S. Kim at Penn State seemed to be the hoped for experimental validation.

However, Wettlaufer and Dash explain the observations differently. Their calculations show that even at temperatures below the freezing point of 4He, the boundary between solid 4He and the container is not frozen. They say that, instead, there is a thin lubricating superfluid film between the solid and its container.

The film is caused by melting at the boundary of the two solids, an effect that occurs in all solids. In ice, for example, interface melting influences the flow of glaciers, and causes frost heave in frozen ground.

Although the alternative explanation rejects the supersolid, it suggests a new and challenging study of superfluidity in a region of pressure and temperature that has not been accessible otherwise.

Related work in Wettlaufer’s group on thermodynamic and surface effects focuses on glycoproteins found in the blood of organisms that live at temperatures where most living things would be frozen. This research was supported by the National Science Foundation, the Bosack and Kruger Foundation and Yale University.

Media Contact

Janet Rettig Emanuel EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A world-first antibody-drug delivery system

It sounds like the stuff of science fiction: a man-made crystal that can be attached to antibodies and then supercharge them with potent drugs or imaging agents that can seek…

Revealed: How SARS-CoV-2 evades our immune system

Scientists at Hokkaido University and Texas A&M University have identified a key mechanism used by the SARS-CoV-2 virus to evade host immune systems. Researchers in Japan and the United States…

New approach developed to predict response of immunotherapies in lung cancer

New methodology at the University Hospital of Tübingen harnesses the function of platelets. At Tübingen University Hospital, a preclinical study led by Dr. Clemens Hinterleitner and Prof. Dr. Lars Zender,…

Partners & Sponsors