Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach studying protein structure could advance drug development

09.12.2004


Developed by biologists at Argonne National Lab



Structural changes in proteins can now be seen in increased detail, using a new application of an existing technique. The application, developed at the U.S. Department of Energy’s Argonne National Laboratory, could help produce lead drugs for disease therapy.

In research published in Chemistry and Biology, the scientists report the use of wide angle X-ray scattering (WAXS), an X-ray diffraction technique that has previously been used to determine the crystalline structures of polymers. The biologists adapted this materials science technique to study ligand-induced structural changes in proteins. Ligands are molecules that can cause the creation of complex compounds in protein structure. The results Argonne scientists achieved using WAXS are comparable to the already accepted predictions of protein structures provided by X-ray crystallography, and are easier and quicker to obtain. The results also show promise for using WAXS as a reliable and high-speed tool for lead drug identification.


WAXS has the potential to identify medicinal drugs that can bind to target proteins and to determine how effective drugs are at binding to and modifying their targeted proteins. The technique is sensitive enough to tell the difference between a ligand that’s just sticking to the surface of a protein (a drug that may have no effect) and a ligand that’s actually changing the structure (a drug that is more likely to be effective). In the past, detecting this difference required the use of several techniques combined. No other previous technique has been able to distinguish the difference on its own, or as quickly.

"Wide angle X-ray scattering provides a real tool for identifying lead drugs," said co-author Lee Makowski of Argonne’s Biosciences Division, "It will identify a molecule that’s good enough to be developed as a drug."

The researchers believe WAXS will allow scientists to study more protein-ligand interactions at a faster and cheaper rate than the existing laborious and expensive X-ray crystallography. "The data collection only takes a couple of minutes," said Makowski, "So theoretically an industrial pipeline could be set up that would only be limited by a few minutes per protein-small molecule interaction." Functional cell-based assays (which are needed for other methods) currently take weeks, if not months to complete--causing a bottleneck in data collection and analysis.

Furthermore, high quality crystal structures are tough to attain, and only a limited number of proteins have documented crystal structures of the protein with and without a ligand present. "There is no other technique like this out there," said co-author Diane Rodi from Argonne’s Biosciences Division, "You can see more detailed changes that take place in protein-ligand interactions in solution than you can with any other technique. And more protein-ligand interactions can be tested."

No previous available technique is able to show the magnitude of protein structure change in the absence of a crystal structure. Small angle X-ray scattering (SAXS) is able to show the size and shape of the protein, but does not show details about the change. Circular dichroism spectroscopy (a method that provides structural information on many types of biological macromolecules) doesn’t show the level of detailed changes WAXS provides.

WAXS does not require any crystallization, but uses the same X-ray scattering procedure as crystallography. The technique involves placing the protein and ligand in a water-based solution and then placing this solution in the path of an X-ray beam. The resulting X-ray scattering pattern reveals information about the detailed structure of the protein-ligand complex, which can then be contrasted with a scattering pattern of the protein alone.

The researchers at Argonne tested four proteins plus and minus their corresponding ligands using WAXS, which uses the intense X-ray beams at the BioCAT facility in the Advanced Photon Source. The proteins were chosen based upon the best structures available from the Protein Data Bank that had already been observed with and without ligands using X-ray crystallography.

"We chose proteins that already had crystal structures so that we could assess just how good the WAXS technique is," said lead-author Bob Fischetti, of both Argonne’s Advanced Photon Source and Biosciences Division, "And of course we wanted to convince people that what we were seeing is real."

The tested proteins displayed changes that directly corresponded to those documented from the crystal structures, proving the observations were real and validating the method as a potential drug discovery tool.

The other author on the report, in addition to Fischetti, Rodi and Makowski is David B. Gore (BioCAT, Advanced Photon Source, Argonne).

The researchers have submitted a grant proposal request to the National Institutes of Health for possible funding of future studies with WAXS.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>