Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers recreate patterns formed by mammalian cells

15.06.2004


Implications for tissue regeneration, birth defects and heart disease



In early development, how do cells know to put the right spacing between ribs, fingers and toes? How do they communicate with each other to form symmetrical and repeated patterns such as zebra stripes or leopard spots?

For the first time, UCLA researchers have recreated the ability of mammalian cells to self-organize, forming evenly spaced patterns in a test tube. Published in the June 22, 2004 issue of the Proceedings of the National Academy of Sciences, the findings may help improve methods for regenerating tissue, controlling birth defects and developing new treatments for specific diseases.


"Just as a marching band needs direction from a conductor to line up in formation on a football field, cells also need guidance to form patterns -- but until now we didn’t know how they were communicating or receiving direction," said Alan Garfinkel, Ph.D., first author and professor of physiology and cardiology at the David Geffen School of Medicine at UCLA.

"Previously it was a bit magical how cells knew exactly how far apart to space ribs or tiger stripes," said Dr. Linda L. Demer, senior investigator, Guthman Professor of Medicine and Physiology, and vice chair for cardiovascular and vascular medicine at the David Geffen School of Medicine at UCLA. "We now know that it’s orchestrated by specific proteins produced by cells that disperse at different rates and interfere with one another. These interactions can be described in mathematical formulas dictating how cells organize into specific, evenly spaced patterns."

Demer notes that similar mechanisms may explain how an embryo creates structures in evenly spaced patterns in early development or how certain diseases may trigger cells to create lesions in specific patterns.

Researchers grew stem cells from adult bovine arteries and found that they produce intricate, lace-like patterns in culture dishes. Such patterns are known to be created in nature by a process called reaction-diffusion discovered by Alan Turing, the mathematician famous for his role in breaking the Nazi code during World War II. He showed that patterns required interaction between an activating protein that draws cells together (activator) and another protein that stops them from coming together (inhibitor). The inhibitor protein must diffuse or disperse more rapidly than the activator. The result creates areas where cells pile up separated by empty spaces. The exact patterns depend on the strength and speed of the two proteins.

The UCLA researchers knew the likely activator protein was BMP-2; it was produced by the cells and caused cells to draw together. One of the researchers, Dr. Kristina Bostrom, had recently discovered a new inhibitor of BMP-2, an unusually small protein known as MGP. The investigators theorized that interference between these two proteins was the source of the patterns. To test this idea, collaborator Dr. Danny Petrasek from the California Institute of Technology generated computer simulations of the expected interactions. He predicted that adding MGP to the cell culture would change the pattern from stripes to spots. Without knowing his result, Bostrom added MGP to the cells and found that they indeed produced spots instead of stripes.

"Using the mathematical formula based on Turing’s concepts, we were able to recreate the classic stripe or spot patterns seen throughout nature – such as in a zebra’s stripes or leopard’s spots," said Garfinkel.

Garfinkel adds that many parts of the body are based on patterns: Stripe patterns are used to generate fingers, ribs and toes, while branching patterns generate vessels, lungs and nerves, and spot patterns produce the organization of hair follicles, vertebrae and teeth. The type of structure formed depends upon the types and amounts of the proteins and cells involved.

To be sure that the proteins were controlling the patterns produced by cells, the researchers added the drug warfarin, which blocks MGP. The result was a double-striped pattern, also predicted by the simulation. This may help explain the known association of warfarin with birth defects.

"The abnormal cell pattern resulting from adding warfarin, may give researchers some insight into how birth defects develop," said Garfinkel.

The next step, Garfinkel added, is to generate more complex patterns by adjusting the ratios of the two proteins BMP-2 and MGP. Such control would be useful for tissue engineering architecture – producing replacement tissue in desired shapes and patterns.

Demer also notes that the research may offer a greater understanding of how artery cells calcify and turn to bone in atherosclerotic heart disease.

"Our ability to recreate cell patterns may ultimately help us learn how to better control them, leading to new ways to treat certain conditions like heart disease," said Demer.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>