Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm phenomenon of falling beer bubbles

15.03.2004


A new experiment by chemists from Stanford University and the University of Edinburgh has finally proven what beer lovers have long suspected: When beer is poured into a glass, the bubbles sometimes go down instead of up.



"Bubbles are lighter than beer, so they’re supposed to rise upward," said Richard N. Zare, the Marguerite Blake Wilbur Professor in Natural Sciences at Stanford. ’’But countless drinkers have claimed that the bubbles actually go down the side of the glass. Could they be right, or would that defy the laws of physics?’’

This frothy question reached a head in 1999 after Australian researchers announced that they had created a computer model showing that it was theoretically possible for beer bubbles to flow downward. The Australians based their simulation on the motion of bubbles in a glass of Guinness draught - a popular Irish brew that contains both nitrogen and carbon dioxide gas.


But Zare and former Stanford postdoctoral fellow Andrew J. Alexander were skeptical of the virtual Guinness model and decided to put it to the test by analyzing several liters of the liquid brew.

"Indeed, Andy and I first disbelieved this and wondered if the people had had maybe too much Guinness to drink," Zare recalled. "We tried our own experiments, which were fun but inconclusive. So Andy got hold of a camera that takes 750 frames a second and recorded some rather gorgeous video clips of what was happening."

Bottoms up, bubbles down

A careful analysis of the video confirmed the Australian team’s findings: Beer bubbles can and do sink to the bottom of a glass. Why does this happen?

"The answer turns out to be really very simple," Zare explained. "It’s based on the idea of what goes up has to come down. In this case, the bubbles go up more easily in the center of the beer glass than on the sides because of drag from the walls. As they go up, they raise the beer, and the beer has to spill back, and it does. It runs down the sides of the glass carrying the bubbles - particularly little bubbles - with it, downward. After a while it stops, but it’s really quite dramatic and it’s easy to demonstrate."

The phenomenon also occurred in other beers that did not contain nitrogen, said Alexander, now a professor at the University of Edinburgh in Scotland. "The bubbles are small enough to be pushed down by the liquid," he said. "We’ve shown you can do this with any liquid, really - water with a fizzing tablet in it, for example."

Confirmation of the sinking-bubble phenomenon has relevance beyond settling barroom bets, according to the researchers.

"There’s a certain aspect of bubbles that always make you think it’s kids’ play and relaxation, but it’s serious stuff, too," Zare said, pointing to ongoing research on fluidized beds - the mixing of solid particles with liquids and gases - which have important industrial and engineering applications.

"It’s just paying attention to the world around you and trying to figure out why things happen the way they do," Alexander added. "In that case, anyone that goes into a pub and orders a pint of Guinness is a scientist."

Mark Shwartz | EurekAlert!
Further information:
http://www.innovations-report.com/html/reports/physics_astronomy/report-24311.html
http://www.stanford.edu/news/
http://www.fluent.com/about/news/pr/pr5.htm

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>