Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm phenomenon of falling beer bubbles

15.03.2004


A new experiment by chemists from Stanford University and the University of Edinburgh has finally proven what beer lovers have long suspected: When beer is poured into a glass, the bubbles sometimes go down instead of up.



"Bubbles are lighter than beer, so they’re supposed to rise upward," said Richard N. Zare, the Marguerite Blake Wilbur Professor in Natural Sciences at Stanford. ’’But countless drinkers have claimed that the bubbles actually go down the side of the glass. Could they be right, or would that defy the laws of physics?’’

This frothy question reached a head in 1999 after Australian researchers announced that they had created a computer model showing that it was theoretically possible for beer bubbles to flow downward. The Australians based their simulation on the motion of bubbles in a glass of Guinness draught - a popular Irish brew that contains both nitrogen and carbon dioxide gas.


But Zare and former Stanford postdoctoral fellow Andrew J. Alexander were skeptical of the virtual Guinness model and decided to put it to the test by analyzing several liters of the liquid brew.

"Indeed, Andy and I first disbelieved this and wondered if the people had had maybe too much Guinness to drink," Zare recalled. "We tried our own experiments, which were fun but inconclusive. So Andy got hold of a camera that takes 750 frames a second and recorded some rather gorgeous video clips of what was happening."

Bottoms up, bubbles down

A careful analysis of the video confirmed the Australian team’s findings: Beer bubbles can and do sink to the bottom of a glass. Why does this happen?

"The answer turns out to be really very simple," Zare explained. "It’s based on the idea of what goes up has to come down. In this case, the bubbles go up more easily in the center of the beer glass than on the sides because of drag from the walls. As they go up, they raise the beer, and the beer has to spill back, and it does. It runs down the sides of the glass carrying the bubbles - particularly little bubbles - with it, downward. After a while it stops, but it’s really quite dramatic and it’s easy to demonstrate."

The phenomenon also occurred in other beers that did not contain nitrogen, said Alexander, now a professor at the University of Edinburgh in Scotland. "The bubbles are small enough to be pushed down by the liquid," he said. "We’ve shown you can do this with any liquid, really - water with a fizzing tablet in it, for example."

Confirmation of the sinking-bubble phenomenon has relevance beyond settling barroom bets, according to the researchers.

"There’s a certain aspect of bubbles that always make you think it’s kids’ play and relaxation, but it’s serious stuff, too," Zare said, pointing to ongoing research on fluidized beds - the mixing of solid particles with liquids and gases - which have important industrial and engineering applications.

"It’s just paying attention to the world around you and trying to figure out why things happen the way they do," Alexander added. "In that case, anyone that goes into a pub and orders a pint of Guinness is a scientist."

Mark Shwartz | EurekAlert!
Further information:
http://www.innovations-report.com/html/reports/physics_astronomy/report-24311.html
http://www.stanford.edu/news/
http://www.fluent.com/about/news/pr/pr5.htm

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>