Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Switched-Off’ genes put first chink in colon cell’s anti-tumor armor

15.03.2004


Johns Hopkins Kimmel Cancer Center scientists have identified a switched-off family of genes that may prove to be a significant and early dent in a colon cell’s anti-cancer armor. The inactivated genes, called SFRPs - for secreted frizzled-related protein - put the brake on a pathway of cell-growth genes that is an early step en route to cancer. Because the way SFRP genes are altered-through the attachment of so-called methyl groups-is reversible, the findings, reported in the March 14 advance online edition of Nature Genetics, also suggest potential anti-cancer value in green tea and other compounds that affect methylation. "SFRP could be a great target for preventing cancer," says Stephen Baylin, M.D., Ludwig Professor of Oncology and director for basic research at the Johns Hopkins Kimmel Cancer Center. A cancer cell stops the SFRP gene’s brake on cell growth by attaching a methyl group to a specific portion of the gene in a process called hypermethylation. Green tea and other compounds are thought to block enzymes that control methylation.



SFRP genes encode proteins that, when secreted on the cell’s surface, stop a chain reaction of cell growth directed by the WNT gene. WNT stands for "wingless type," which, along with SFRP genes, gets its name from characteristics of fruit flies with mutations in these genes. The WNT gene pathway has long been linked to colon cancer by scientists at the Kimmel Cancer Center and elsewhere.

"Previously, we thought that mutations downstream of the WNT gene were enough to trigger the cell to stay alive, keep growing and develop into a tumor. Our key finding is that the cell also may need to shut off SFRP genes to become cancerous," says Baylin. When Baylin’s team put SFRPs back into colon cancer cells with inactivated SFRP genes and mutations in the WNT pathway, the cells stopped growing uncontrollably and died.


The research team also found that inactivation of SFRP genes occurs in the earliest form of lesion, called an atypical crypt foci (earlier than polyps or cancer). Approximately 5 percent of these lesions become colon cancers. "The colon cancer process may start by shutting off SFRP genes, which allows the WNT pathway to stay on, and these colon cells grow into atypical crypt foci," Baylin explains. "Then, some of these early lesions may acquire mutations in the WNT pathway that push the cell into growth overdrive, failure to die properly, and development into polyps and, finally, cancer."

In addition to studying natural compounds, the scientists will be investigating the prevention properties of aspirin, non-steroidal anti-inflammatory drugs, and other drugs that block methylation to determine their effect on SFRP genes.


This research was funded by the National Institute of Environmental Health Services.

Other participants in the research are Hiromu Suzuki, D.Neil Watkins, Kam-Wing Jair, Kornel E. Schuebel, Yoshimitsu Akiyama, Bin Yang, and James G. Herman from the Johns Hopkins Kimmel Cancer Center; Sanford D. Markowitz from the Howard Hughes Medical Institute and Case Western Reserve University, Teresa P. Pretlow and Wei-Dong Chen from Case Western Reserve, Manon van Engeland from the University of Maastricht, the Netherlands, Minoru Toyota, Takashi Tokino and Kohzoh Imai from Sapporo Medical University, and Yuji Hinoda of the Yamaguchi University School of Medicine, Japan.

The license to the MSP technique used in this research belong to OncoMethylome. Drs. Baylin and Herman serve as consultants to OncoMethylome and are entitled to royalties from any commercial use of this procedure. The terms of this arrangement are being managed by the Johns Hopkins University according to its conflict of interest policies.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>