Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique reveals new structure in retinal cells

18.02.2004


A new imaging technique used by a group of researchers at the University of Washington and elsewhere has revealed a previously unknown cellular structure in the retinas of mice. The structure is the site for an important part of the retinoid cycle, a chemical process critical to vision, the scientists said. Results of their study, which took more than three years, appeared in the Feb. 2 issue of the Journal of Cell Biology.



Dubbed a retinosome, the newly discovered organelle houses retinyl esters, which are an intermediate chemical product in the retinoid cycle. That cycle is critical in the regeneration process for 11-cis-retinal, a light-absorbing chemical vital to vision.

Dr. Yoshikazu Imanishi, senior research fellow in the UW Department of Ophthalmology, worked on the project with Dr. Kris Palczewski, Bishop Professor and professor of ophthalmology, chemistry, and pharmacology at the UW; Matthew Batten, a research scientist in Palczewski’s lab; and researchers from Vanderbilt University and the University of Utah.


Retina tissue doesn’t survive long outside of the eye, so Imanishi and his colleagues developed a technique to examine the tissue in a natural setting. They used a pulse laser to perform two-photon fluorescent microscopy on the retinas of live, anesthetized mice. The low-power, non-invasive technique allowed the researchers to examine the retina tissue within the eye without damaging it.

After discovering the previously unknown structure, the researchers isolated its role in the retinoid cycle through a chemical analysis. They also watched the retinoid cycle in normal mice and two types of transgenic mice, one without the ability to produce retinyl esters and the other unable to process the esters. Both the analytical chemical method and the genetic tests indicate that the retinosome houses retinyl esters for the retinoid cycle.

The researchers hope the new imaging technique will continue to boost understanding of the retina and the retinoid cycle. Since many types of congenital blindness are caused by defects in the retinoid cycle, the researchers hope their findings could one day help in clinical applications.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>