Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making of mouse marks move toward ’mitochondrial medicine’

10.02.2004


There sits in most mammalian cells what amounts to a lock-box of DNA tucked away from the bulk of genetic material. While scientists routinely cut and paste snippets of life’s blueprint to learn more about life and to treat disease, crucial DNA within cellular structures known as mitochondria has remained off-limits.



That’s beginning to change, though, thanks in part to work described in the Feb. 10 issue of the Proceedings of the National Academy of Sciences by a team from the University of Rochester Medical Center and the University of Melbourne in Australia. Scientists created a new kind of mouse by replacing the genetic material in the mitochondria of one species with that from another in a gene-swapping exercise necessary if doctors are to understand several currently untreatable human diseases.

"What we call mitochondrial medicine – how specific mitochondrial mutations and deficiencies lead to disease – didn’t even exist 15 years ago. Now the field is in its infancy. The ultimate goal is improved treatment for people with disorders that currently can’t be treated," says Carl A. Pinkert, Ph.D., of the Center for Aging and Developmental Biology at Rochester, who led the Rochester team.


The creation of the new kind of mouse is the result of several years of painstaking research by two groups of scientists working together across the globe. The work marks one of the most successful forays yet into the manipulation of DNA in the mitochondria, cellular structures that play a vital role in creating energy that power cells.

"We used an approach that had a high risk of failure, but one that will now provide exciting new insights into how mitochondrial genes may affect the way common diseases express themselves," says Ian Trounce of the University of Melbourne in Australia, whose team did much of the laboratory work.

Just as last summer’s blackout in the Northeast touched nearly every aspect of life on a societal scale, so too does trouble with the cell’s powerhouse, the mitochondrion, touch upon scores of diseases. In many diseases that become more common as people age – from infertility and diabetes to cancer, Alzheimer’s and Parkinson’s diseases – faltering mitochondria are known to play a role. And the cellular machinery is at the heart of several less common inherited diseases that affect patients more drastically at a younger age. When a cell’s mitochondria fail, the massive power loss not only injures or kills the cell but can even lead to organ failure or death.

For technical reasons, the tiny bit of genetic code carried inside the mitochondria – just 37 genes out of tens of thousands of genes overall in humans – has remained largely off limits to researchers. After all, most cells have anywhere from a few hundred to a few thousand mitochondria, compared to just one nucleus, making the nucleus the easiest and most likely target for manipulation.

"We’ve had the ability to modify genes in the nucleus for more than 20 years," says Pinkert, "but it’s technologically more challenging to change mitochondrial DNA. It’s difficult to isolate and change mitochondria in large numbers without doing major damage to the cell."

Pinkert and Trounce teamed up to tackle the problem. In the research described in the PNAS paper, they started out with 1,136 mouse embryos into which they injected stem cells containing mitochondria from another mouse species. Ultimately, after another generation of breeding, the team ended up with just six "germ-line" offspring containing only the introduced mitochondria – in effect, "transplanted" mitochondria from another species. All six were males; just three lived longer than one day.

"While we’re pleased with the success we did have, we have a lot of work ahead of us to figure out why the numbers are so low," says Pinkert, professor of pathology and laboratory medicine, who was attracted to the university three years ago by a thriving community of researchers focusing on genetic engineering and mitochondrial biology. "It’s important to work this out, if we are to develop models of disease that will allow us to create new strategies and therapies for patients with incurable metabolic diseases affected by mitochondrial function."


Much of the research in Trounce’s laboratory was done by Matthew McKenzie, a former graduate student at the University of Melbourne who is now at University College in London; in Pinkert’s laboratory in Rochester, technical associate Carolyn Cassar contributed to the project. The work was funded by the National Institutes of Health and the Medical Research Council of Australia.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>