Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers find two circadian clocks in the same plant tissue

08.05.2003


Dartmouth researchers have found evidence of two circadian clocks working within the same tissue of the plant Arabidopsis thaliana, a flowering plant often used in genetic studies. Their results suggest that plants can integrate information from at least two environmental signals, light and temperature, which is important in order to respond to seasonal changes.



The study, published this week, appears in the online edition of the Proceedings of the National Academy of Sciences.

"Having two clocks with different sensitivities to light and to temperature is a better way to ensure that both signals of environmental input are fully understood by the plant," says C. Robertson McClung, professor of biological sciences and an author on the paper. "The plant can then process the data and make decisions about flowering, which is a very critical decision. Arabidopsis flowers in response to the lengthening days of spring, but if it were to flower too soon and there is a nasty frost, the blossoms will die. Early spring is cool, so it makes sense for a plant to clue in to more than one environmental signal."


The researchers, which included McClung, Todd Michael, a former graduate student who is now a postdoctoral fellow at the Salk Institute in San Diego, and Patrice Salomé, a graduate student, followed rhythms in two kinds of genes – one kind that encodes for photosynthesis and another not involved in photosynthesis. The genes in this study are both found in the mesophyll, the spongy inner layer of tissue in leaves.

To measure gene expression, McClung and his students manipulated the clock-controlled genes they were studying and put them in control of luciferase, the enzyme that makes fireflies glow, and then introduced that new gene into Arabidopsis. Each plant in the study had only one altered, light-making gene. When that gene was stimulated, light production was captured by a very sensitive camera. McClung and his team used this method to test how Arabidopsis responded to conflicting signals, such as a cycle of cool days and warm nights.

"We found if we gave them warm nights and cool days, the photosynthetic gene ignored the temperature signal and behaved as if it was only seeing the light signal, which makes sense because photosynthesis absolutely depends on daylight," says McClung. "But the other gene ignored the light signal and responded to the temperature signal. That kind of surprised us."

McClung and his students continued the study by examining how the circadian clocks were reset by different stimuli. For example, people respond to a pulse of light prior to dawn by readjusting their internal clocks a few hours ahead. The same pulse of light administered after dusk delays the clock. The researchers found that the non-photosynthetic gene, which favored temperature signals, showed an exaggerated response to pulses of cold air relative to the photosynthetic gene that responded more to light signals.

"This could only occur if the two genes were responding to two different clocks," says McClung. "Since both the genes are expressed in the mesophyll, it’s clear that both clocks are operating in that tissue. This is exciting because this is the first good example of two clocks operating within a single tissue in any multicellular organism. We’re not quite at the point where we can find out if there are two clocks operating in a single cell, but that’s our goal."


This research is supported by the National Science Foundation.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>