Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny technology leads to big changes in DNA research at Argonne

07.10.2002


New gene therapy procedures, DNA-based sensors, and other medical applications may be possible using a new method to initiate and control chemical reactions on DNA strands, developed by a team of chemists at the U.S. Department of Energy’s Argonne National Laboratory. The new technology uses specially designed nanometer-sized semiconductors--less than a billionth of an inch in size.



The technology is based on the group’s discovery of "conductive linkers"--small organic molecules that connect the electronic properties of semiconductors to biological or organic molecules. The scientists have used conductive linkers to connect strands of DNA to titanium dioxide crystals measuring only 4.5 nanometers in diameter (a nanometer is about 10,000 times narrower than a human hair).

In the presence of light, a titanium dioxide nanocrystal acts as a semiconductor, generating strong oxidizing power that attacks organic molecules in the same uncontrollable way that laundry bleach attacks all colors in the wash. The researchers found that by using different conductive linkers they can selectively control oxidation.


These nanoparticles have a wide range of potential applications in DNA-based sensing devices. The scientists use the speed of electron transfers to determine the sequence and structure of DNA strands. The four bases that make up DNA are known to have different electronic properties that vary with the sequence and structure of the DNA strand. Guanine is the most readily oxidized, and therefore has the fastest reaction. It is followed, in decreasing order of reactivity, by adenine, cytosine and thymine. By activating the titanium dioxide with light, the team can study the reactions and determine the sequence by comparing the speed and efficiency of the reactions.

The team is part of the Argonne Chemistry Division and includes Chemistry Division Director Marion Thurnauer and chemists Tijana Rajh, David Tiede and Lin Chen. In addition, the team has collaborated with Gayle Woloshak of Northwestern University, formerly of Argonne, to exploit this chemistry for use in gene therapy.

In the body, proteins called restriction enzymes are normally used to recognize and cut defective gene sequences. The researchers have created a novel "artificial restriction enzyme" that can be focused and controlled by light.

For example, a synthetic DNA single strand containing the sequence of a genetic defect can be linked to titanium dioxide. The researchers have shown that the DNA strand will carry the attached titanium dioxide to the cell nucleus, and presumably to the site of the genetic defect on the chromosome. Light will initiate the oxidative chemistry, which clips the defective gene and permits repair with a healthy gene sequence.


The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago as part of the U.S. Department of Energy’s national laboratory system.

Katie Williams | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Life Sciences:

nachricht A new view of microscopic interactions
02.07.2020 | University of Missouri-Columbia

nachricht B-cell protectors
02.07.2020 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>