Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Programming Cells to Home to Specific Tissues may Enable More Effective Cell-based Therapies

28.10.2011
Stem cell therapies hold enormous potential to address some of the most tragic illnesses, diseases, and tissue defects world-wide.

However, the inability to target cells to tissues of interest poses a significant barrier to effective cell therapy. To address this hurdle, researchers at Brigham and Women’s Hospital (BWH) have developed a platform approach to chemically incorporate homing receptors onto the surface of cells.

This simple approach has the potential to improve the efficacy of many types of cell therapies by increasing the concentrations of cells at target locations in the body. These findings are published online in the journal Blood on October 27, 2011.

For this new platform, researchers engineered the surface of cells to include receptors that act as a homing device. “The central hypothesis of our work is that the ability of cells to home to specific tissues can be enhanced, without otherwise altering cell function,” said corresponding author Jeffrey M. Karp, PhD, co-director of the Regenerative Therapeutics Center at BWH and a principal faculty member of the Harvard Stem Cell Institute. “By knowing the ‘zip code’ of the blood vessels in specific tissues, we can program the ‘address’ onto the surface of the cells to potentially target them with high efficiencies.”

While conventional cell therapies that include local administration of cells can be useful, they are typically more invasive with limited potential for multiple doses. “You can imagine, that when the targeted tissue is cardiac muscle, for example to treat heart attacks or heart failure, injecting the cells directly into the heart can be an invasive procedure and typically this approach can only be performed once,” said Dr. Karp, also an assistant professor at Harvard Medical School and affiliate faculty Harvard-MIT Division of Health Sciences and Technology.

Using the platform the researchers created, the cells are prepared to travel directly to the area of interest after being injected through a common and much less invasive intravenous infusion method. “These engineered cells may also be more effective because multiple doses can be administered” stated Debanjan Sarkar, PhD, previously a postdoctoral fellow in Dr. Karp’s lab and now an Assistant Professor of Biomedical Engineering at the State University of New York, University at Buffalo.

“The necessity for a more effective delivery approach stems from the potential diseases cell therapy may address,” said Dr. Karp, noting that the approach can be used to systemically target bone producing cells to the bone marrow to treat osteoporosis, cardiomyocytes to the heart to treat ischemic tissue, neural stem cells to the brain to treat parkinson’s disease, or endothelial progenitor cells to sites of peripheral vascular disease to promote formation of new blood vessels.

The researchers concluded that, as the understanding of the mechanisms of cell trafficking grows, the ability to improve homing to specific tissues through engineered approaches should significantly enhance cell therapy by reducing the invasiveness of local administration, permitting repeat dosing, and potentially reducing the number of cells required to achieve a therapeutic effect, ultimately providing better outcomes for patients.

Study authors also include: Sebastian Schafer, Weian Zhao, Dawn P. Spelke, Joseph A. Philips, Praveen Kumar Vemula, and Rukmani Sridharan, each of Brigham and Women's Hospital, Harvard Medical School, the Harvard Stem Cell Institute, and the Harvard-MIT Division of Health Science and Technology; Joel A. Spencer, of Massachusetts General Hospital, Harvard Medical School, and Tufts University; Rohit Karnik, of the Massachusetts Institute of Technology; and Charles P.Lin, of Massachusetts General Hospital and Harvard Medical School.

Holly Brown-Ayers | EurekAlert!
Further information:
http://www.brighamandwomens.org/
http://www.brighamandwomens.org/about_bwh/publicaffairs/news/pressreleases/PressRelease.aspx?sub=0&PageID=987

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>