Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perseus translates proteomics data

27.07.2016

Do you speak -omics? If you don't, Perseus – www.perseus-framework.org might be able to help you. Researchers from the Max Planck Institute of Biochemistry in Martinsried have developed this free software platform for users of high-throughput techniques, such as mass spectrometry, in order to translate raw biological data into relevant findings. As reported in the current issue of Nature Methods, molecular signatures from cells, tissue and body fluids can be identified and characterized on this platform without the need for bioinformatic training. Perseus was designed to deal with proteomic studies. It has also proven itself in other molecular studies and will be expanded accordingly.

Do you speak -omics? If you don't, Perseus – www.perseus-framework.org might be able to help you. Researchers in Martinsried have developed this free software platform for users of high-throughput techniques, such as mass spectrometry, in order to translate raw biological data into relevant findings.


Researchers in the life sciences can now use the free software platform www.perseus-framework.org to analyze raw data from high-throughput techniques.

Tyanova, Krause © MPI of Biochemistry

As reported in the current issue of Nature Methods, molecular signatures from cells, tissue and body fluids can be identified and characterized on this platform without the need for bioinformatic training. Perseus was designed to deal with proteomic studies in which data on thousands of proteins is processed. It has, however, also proven itself in other molecular studies and will be expanded accordingly.

Absolutely nothing in an organism works without proteins. These molecules operate as molecular machines, act as building materials and appear in a variety of other roles. However, they are rarely lone warriors, with the result that analyzing the sum total of all proteins in a cell, a tissue, a body fluid or even in an entire organism is essential.

This can establish when and where a particular molecule appears in what quantity and with whom it interacts. Corresponding approaches exist for other biological molecules as well. Modern high-throughput techniques such as mass spectrometry provide the necessary raw data, often from several thousand different proteins.

Meaningful and relevant relationships need to be extracted and interpreted from these mountains of data. Given the huge quantity of raw data, this is now possible only with the help of computer-based methods. “These steps have become a bottleneck in high-throughput studies,” says Jürgen Cox from the Max Planck Institute of Biochemistry in Martinsried, who leads the development of the Perseus platform.

“We assume that there are still a lot of potentially important findings hidden in existing proteomics data only because the appropriate computer methods are technically too complex or the data does not end up with the researchers who could grasp the biological importance of the results.”

Cox and his team have therefore ensured that individual algorithms no longer have to find their way to the right laboratories. Instead, researchers can collect their software where they need it at a central point. Among other things, the Perseus platform allows highly varying protein amounts to be screened and analyzed.

It can quantify proteins and capture their interactions and modifications. The platform incorporates statistical methods, which identify patterns, analyze time series data, test multiple hypotheses and compare data obtained from different techniques.

No previous knowledge or special training is required as the platform is an interactive environment involving user participation and featuring highly intuitive operability. The site features helpful descriptions of the functions and parameters, while YouTube videos explaining how to use the platform and a Google group with more than 1,400 active users also provide assistance. “Perseus successfully completed the first pilot tests, also in extremely complex interdisciplinary investigations,” as Cox relates. “In fact, the software not only runs on proteomic data, but also in other large data sets. In future, we will adapt the programs for metabolomic studies.”

Original publication:
S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M.Y. Hein, T. Geiger, M. Mann & J. Cox: The Perseus computational platform for comprehensive analysis of (prote)omics data, Nature Methods, June 2016
DOI: 10.1038/nmeth.3901

Contact:
Prof. Jürgen Cox, PhD
Computational Systems Biochemistry
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: cox@biochem.mpg.de
www.biochem.mpg.de/cox

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en - homepage max planck institute of biochemistry
http://www.biochem.mpg.de/cox - homepage research group "Computational Systems Biochemistry“ (Jürgen Cox)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Further reports about: Biochemie Biochemistry Cox Max Planck Institute Max-Planck-Institut Perseus

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>