Perseus translates proteomics data

Researchers in the life sciences can now use the free software platform to analyze raw data from high-throughput techniques. Tyanova, Krause © MPI of Biochemistry

Do you speak -omics? If you don't, Perseus – might be able to help you. Researchers in Martinsried have developed this free software platform for users of high-throughput techniques, such as mass spectrometry, in order to translate raw biological data into relevant findings.

As reported in the current issue of Nature Methods, molecular signatures from cells, tissue and body fluids can be identified and characterized on this platform without the need for bioinformatic training. Perseus was designed to deal with proteomic studies in which data on thousands of proteins is processed. It has, however, also proven itself in other molecular studies and will be expanded accordingly.

Absolutely nothing in an organism works without proteins. These molecules operate as molecular machines, act as building materials and appear in a variety of other roles. However, they are rarely lone warriors, with the result that analyzing the sum total of all proteins in a cell, a tissue, a body fluid or even in an entire organism is essential.

This can establish when and where a particular molecule appears in what quantity and with whom it interacts. Corresponding approaches exist for other biological molecules as well. Modern high-throughput techniques such as mass spectrometry provide the necessary raw data, often from several thousand different proteins.

Meaningful and relevant relationships need to be extracted and interpreted from these mountains of data. Given the huge quantity of raw data, this is now possible only with the help of computer-based methods. “These steps have become a bottleneck in high-throughput studies,” says Jürgen Cox from the Max Planck Institute of Biochemistry in Martinsried, who leads the development of the Perseus platform.

“We assume that there are still a lot of potentially important findings hidden in existing proteomics data only because the appropriate computer methods are technically too complex or the data does not end up with the researchers who could grasp the biological importance of the results.”

Cox and his team have therefore ensured that individual algorithms no longer have to find their way to the right laboratories. Instead, researchers can collect their software where they need it at a central point. Among other things, the Perseus platform allows highly varying protein amounts to be screened and analyzed.

It can quantify proteins and capture their interactions and modifications. The platform incorporates statistical methods, which identify patterns, analyze time series data, test multiple hypotheses and compare data obtained from different techniques.

No previous knowledge or special training is required as the platform is an interactive environment involving user participation and featuring highly intuitive operability. The site features helpful descriptions of the functions and parameters, while YouTube videos explaining how to use the platform and a Google group with more than 1,400 active users also provide assistance. “Perseus successfully completed the first pilot tests, also in extremely complex interdisciplinary investigations,” as Cox relates. “In fact, the software not only runs on proteomic data, but also in other large data sets. In future, we will adapt the programs for metabolomic studies.”

Original publication:
S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M.Y. Hein, T. Geiger, M. Mann & J. Cox: The Perseus computational platform for comprehensive analysis of (prote)omics data, Nature Methods, June 2016
DOI: 10.1038/nmeth.3901

Prof. Jürgen Cox, PhD
Computational Systems Biochemistry
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: – homepage max planck institute of biochemistry – homepage research group “Computational Systems Biochemistry“ (Jürgen Cox)

Media Contact

Dr. Christiane Menzfeld Max-Planck-Institut für Biochemie

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Optically Active Defects Improve Carbon Nanotubes

Heidelberg scientists achieve defect control with a new reaction pathway. The properties of carbon-based nanomaterials can be altered and engineered through the deliberate introduction of certain structural “imperfections” or defects….

Visualizing the motion of vortices in superfluid turbulence

Nobel laureate in physics Richard Feynman once described turbulence as “the most important unsolved problem of classical physics.” Understanding turbulence in classical fluids like water and air is difficult partly…

Toward a reliable oral treatment for sickle cell disease

For the millions of people worldwide who have sickle cell disease, there are only a few treatment options, which include risky bone marrow transplants, gene therapy or other treatments that…

Partners & Sponsors