Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen deficiency rewires mitochondria

07.11.2019

Researchers slow the growth of pancreatic tumour cells

Mitochondria burn oxygen and provide energy for the body. Cells lacking oxygen or nutrients have to change their energy supply quickly in order to keep growing. In a study published in Nature, scientists from the Max Planck Institute for Biology of Ageing have now shown that mitochondria are reprogrammed under depleted oxygen and nutrients.


Tumours of the pancreas may also use this reprogramming mechanism to keep growing despite reduced nutrient and oxygen levels. The researchers believe that proteins in this newly discovered signaling pathway could be a good target for therapies against pancreatic cancer, for which no drug is currently available.

Cells adapt to oxygen deficiency by switching their energy supply to glycolysis, in which sugar is fermented without oxygen. This may be necessary in old age, for example, as the cells in the body are often less supplied with oxygen and nutrients. Also, cancer cells can face this problem, because some tumours have poor blood supply and thus little oxygen and nutrients reach the cells.

"It has been known for some time that cells reduce the number of mitochondria when they lack oxygen and switch to glycolysis. We have now discovered that the remaining mitochondria are additionally reprogrammed to meet the new requirements," explains Max Planck Director Thomas Langer.

Changeover with built-in timer

This happens via a newly discovered signalling pathway in the cell: a protease in the membrane of mitochondria is activated during the conversion to glycolysis and then breaks down various proteins in the organelles.

As a result, no new mitochondria can be formed and the remaining mitochondria change their metabolism. This process eventually stops on its own, as the protease begins to degrade itself at high activity. "This signalling pathway not only has a built-in timer, but also enables a very rapid response to oxygen deficiency," said Langer.

Reduced growth of tumour cells

The researchers examined cancer cells originating from patients with pancreatic tumours. These tumours grow under oxygen deficiency and are highly aggressive. The scientists were able to reduce tumour growth by switching off the signalling pathway in the mitochondria. This was seen in cancer cells in the Petri dish as well as in pancreatic tumours in mice.

"There is currently no treatment available for pancreatic cancer. I believe that this protease can be a very interesting therapeutic target because we have seen that the signalling pathway is also active in human patients with pancreatic cancer," explains Langer. "However, there are no known substances that have an effect on this protease.”

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Langer, tlanger@age.mpg.de

Originalpublikation:

Thomas MacVicar, Yohsuke Ohba, Hendrik Nolte, Fiona Carola Mayer, Takashi Tatsuta, Hans-Georg Sprenger, Barbara Lindner, Yue Zhao, Jiahui Li, Christiane Bruns, Marcus Krüger, Markus Habich, Jan Riemer, Robin Schwarzer, Manolis Pasparakis, Sinika Henschke, Jens C. Brüning, Nicola Zamboni, Thomas Langer
Lipid signalling drives proteolytic rewiring of mitochondria by YME1L
Nature, 6. November 2019

Weitere Informationen:

http://www.age.mpg.de

Dr. Maren Berghoff | Max-Planck-Institut für Biologie des Alterns

More articles from Life Sciences:

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Social networks reveal dating in blue tits
20.02.2020 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Sweet beaks: What Galapagos finches and marine bacteria have in common

20.02.2020 | Life Sciences

Social networks reveal dating in blue tits

20.02.2020 | Life Sciences

More focus and comfort at telephone workstations

20.02.2020 | Communications Media

VideoLinks
Science & Research
Overview of more VideoLinks >>>