Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mistletoe – Founder of lifelong relationships is a clever parasite

17.05.2018

European Mistletoe is a plant surrounded by a number of myths. At Christmas, people hang it up to meet for a kiss under it according to a legend, these couples stay together for a lifetime. Comic fans know the plant as the main ingredient of the magic potion of Asterix & Obelix. In its natural environment, Mistletoe is an evergreen parasite, extracting water and nutrients from its tree host.

Now, a team of scientists at the Max Planck Institute of Molecular Plant Physiology and at the John Innes Center discovered that the mistletoe’s parasitic lifestyle has led the species to a drastic evolutionary loss of key cell components which are involved in the energy production of the plant.


Evergreen Mistletoe attached to a host tree

© Etienne Meyer, MPI-MP Potsdam

Plant parasites are provided with nutrients and water by its host, all necessary requirements to keep fit and healthy. Dr. Etienne Meyer and his colleagues of the MPI-MP are fascinated by this life style. “Parasites are clever”, he says. “They get most of what they need from their host and it seems that they can waive cell functions which are needed in all other organisms.”

For the European Mistletoe (Viscum album) they showed a loss of function to produce energy. Usually, energy is produced in form of the chemical molecule ATP in the mitochondria. “Those organelles are considered as the powerhouse of the cell as they perform respiration to produce ATP”, Etienne Meyer explains.

“In our study, we found out that mitochondria in mistletoe is remodeled. It is missing an enzyme called Complex I, which is essential for aerobic respiration in animals and plants.” Instead, mistletoe uses alternative energy pathways, including glycolysis, which generates energy in a different part of the cell but is less efficient.

The research team was surprised to realize the complete loss of Complex I. Earlier studies suggested that mistletoe had lost genes responsible for producing Complex I. But it wasn’t proof that mistletoe lacked the complex altogether. There was a possibility that these genes had been transferred from mitochondria into the nuclear genome.

So far, it was thought that this piece of metabolic machinery is essential for all multicellular organisms. The researchers were stunned to discover the first case of a multicellular eukaryote that lost most of its respiratory capacity. Until now, such a transformation has only been reported in unicellular organisms that either are parasites or involved in a symbiotic relationship.

But what is the reason for such a structural change in the plant organelles and reducing the effectiveness of an established energy producing system? Maybe the adaptation to a parasitic lifestyle, resulting in a supply of nutrients by the host, could save the plant the energy, which is required to assemble the mitochondrial complexes.

Next to answer this question, future work of Etienne Meyers team and his cooperation partners will investigate the mitochondria of other parasitic species to determine if the reduction of respiratory capacity is specific to mistletoe or if it is a consequence of parasitism. Moreover, the knowledge may assist in the fight against damaging crop parasites such as witchweed (Striga asiatica L.) that affects maize yield.

Contact:
Dr. Etienne Meyer
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8318
EMeyer@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Press and public relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
Glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Original publication
Andrew E. Maclean, Alexander P. Hertle, Joanna Ligas, Ralph Bock, Janneke Balk, Etienne H. Meyer,
Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe
Current Biology, 3.5.2018, https://doi.org/10.1016/j.cub.2018.03.036

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2217029/mistletoe

Dr. Ulrike Glaubitz | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>