Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Technique: Researchers Produce Biofuel for Conventional Diesel Engines

19.06.2017

In accordance with an EU directive, conventional automotive diesel is supplemented with seven percent biodiesel. This proportion is set to rise to ten percent by 2020. However, this presents a significant technical challenge: biodiesel vaporises at higher temperatures, which can lead to problems with electronic fuel injection systems and particulate filters. Researchers from Kaiserslautern, Bochum, and Rostock have developed a method for producing a petroleum diesel-like fuel from conventional biodiesel at low temperatures. The new biofuel fulfils the current EU and US requirements. It can be used undiluted in modern diesel engines or mixed in any ratio with petroleum diesel.

The researchers present their work in the prestigious journal Science Advances.

Joint press release by the University of Kaiserslautern and Ruhr-Universität Bochum

In Europe, biodiesel is largely produced from rapeseed oil. Chemically, it comprises long-chain hydrocarbon compounds, known as fatty acid methyl esters. It has different properties to diesel obtained from mineral oil. For instance, the boiling point is much higher.


Professor Lukas J Gooßen

Credit: RUB, Kramer


The new technology was developed at the collaborative research centre ‘3MET’ at the University of Kaiserslautern. (In the photo: Agostino Antonio Biafora and Annika Bernhardt, members of 3MET.)

Credit: Thomas Koziel/ University of Kaiserslautern

This means biodiesel tends to vaporise only partially, and to form deposits on engine components. This makes pure biodiesel unsuitable as a fuel for standard engines. Injection pumps, seals, and pipes would need to be constructed differently. “Cars fuelled with pure biodiesel require specially designed engines,” explains Dr Lukas Gooßen.

In collaboration with chemists Kai Pfister and Sabrina Baader from the collaborative research centre ‘3MET’ at the University of Kaiserslautern, Gooßen has developed an innovative technique for treating biodiesel. “With virtually no energy input, we convert a mixture of plant-derived fatty esters and bio-ethylene, another chemical compound, into fuel,” the professor says. “This can be combusted undiluted in modern diesel engines.”

The particular advantage of this new technique is that the researchers are able to precisely adjust the chemical properties of the mixture. “We combine two catalytic methods to transform the long-chain fatty esters into a mixture of compounds with shorter chains,” he elaborates. This process changes the ignition and combustion properties of the biodiesel. Combustion starts at lower temperatures.

“We are thus able to adjust our biodiesel to the applicable standards for petroleum diesel,” Gooßen adds. Moreover, the process is environmentally friendly: it neither requires solvents, nor produces waste.

The two methods were synchronised with each other using mathematical simulations by Mathias Baader from the University of Kaiserslautern. Silvia Berndt at the University of Rostock proved that the mixture complies with the strict standard (EN 590) for modern diesel engines. In preliminary test runs, Kai Pfister has managed to demonstrate that this new diesel fuel can actually power a model car.

The research was carried out within the collaborative research centre ‘3MET’ (SFB/TRR 88 ‘Cooperative Effects in Homo and Heterometallic Complexes’) at the University of Kaiserslautern and the cluster of excellence ‘RESOLV’ (Ruhr Explores Solvation’) at Ruhr-Universität Bochum. It was also supported by the German Federal Environmental Foundation (DBU) and the Carl Zeiss Foundation.

Gooßen holds the Evonik Chair of Organic Chemistry at Ruhr-Universität Bochum. Until last year, he was professor at the University of Kaiserslautern, where the new technology was developed. His graduate students Kai Pfister and Sabrina Baader have successfully completed their doctoral work and are now pursuing careers in industry.

The study was published in the prestigious journal Science Advances: ‘Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines’.
DOI: 10.1126/sciadv.1602624

For enquiries:
Prof Dr Lukas J Gooßen
Ruhr-Universität Bochum
Tel.: +49 (0)234 32 19075
Email: lukas.goossen(at)rub.de

Dr Marc Prosenc
‘3MET’ Office
University of Kaiserslautern
Tel.: +49 (0)631 205 5185
Email: prosenc(at)chemie.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>