Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Host or symbiont? Proteomics gives new insights into reef organisms’ reaction to environment stress

28.02.2018

Similar to corals, foraminifera in tropical reefs bleach as the water temperature rises. In research, these unicellular organisms can help to investigate the effects of climate change on calcifying organisms. Scientists from Bremen and Dortmund have analysed how tropical foraminifera and their symbiotic algae deal with rising sea temperatures on a molecular level. New proteomics methods have now for the first time enabled them to differentiate between host and symbiont reactions to thermal stress. The results of the project, funded by the Leibniz competition, have been published in the journal Scientific Reports.

Researchers from the Leibniz Centre for Marine Tropical Research (ZMT) in Bremen, the Leibniz Institute for Analytical Sciences (ISAS) in Dortmund and the University of Bremen have been involved in this publication.


Foraminifera Amphistegina lessonii: The green-brown colouration in the upper left corner shows the symbionts, which have moved into the outer chamber. The Foraminifera has a diameter of around 1mm.

© Marleen Stuhr, Leibniz Centre for Tropical Marine Research (ZMT)


A partially bleached foraminifera Amphistegina gibbosa under the fluorescence microscope after one month of thermal stress (32°C).

© Erik Freier, Leibniz Institute for Analytical Sciences (ISAS)

Foraminifera are found throughout the ocean – from the intertidal zone to the deepest ocean trenches, from the tropics to the poles. Some species float in the water as plankton, others live on the seabed. Since they form a calcareous casing, these tiny organisms play an important role in reefs in the formation of sediment.

Like tropical corals, some types of foraminifera can only exist in symbiosis with algae. These symbionts live in the cell of their host organisms and supply them with energy. Under changed environmental conditions, such as rising water temperature or light intensity, the protein composition of foraminifera and their symbiotic algae changes. This can damage the community and lead to bleaching, similar to coral bleaching.

A systematic analysis of the proteins, i.e. proteomics, can provide information about the physiological state of the organism. But who is ultimately responsible for the stress response: the foraminifera and thus the host, or the algae, the symbiont?

ZMT scientist Marleen Stuhr investigated this question in her doctoral thesis under the guidance of Professor Hildegard Westphal (Workgroup Geoecology and Carbonate Sedimentology). Over various periods and intervals Stuhr exposed foraminifera of the genus Amphistegina and their symbiotic algae (diatoms) to elevated temperatures.

Together with Professor Albert Sickmann, bioanalyst at ISAS, and Professor Michal Kucera, micropaleontologist at MARUM - Center for Marine Environmental Sciences at the University of Bremen, the geoecologist adapted new proteomics analysis methods to foraminifera. Thus, for the first time, the team succeeded in breaking down the contributions of the unicellular organisms and their symbionts to the stress response.

“In the algal symbionts, we saw an increase in proteins that indicate the degradation of damaged cell components and cell death, while the proteins for photosynthesis declined – a clear sign that this process of energy production was no longer working," said Marleen Stuhr.

The host organism, on the other hand, appeared to be less susceptible, according to the scientist. "In the thermally stressed foraminifera, we were able to demonstrate a clear increase in the number of proteins required for cell repair, because the stressed symbionts damaged their host. The foraminifera, however, adapted to the new conditions, now increasingly drawing their energy from their energy stores and absorbing more substances from the surrounding environment.”

Co-author Professor Albert Sickmann from ISAS added: "Using physiological measurements, researchers have so far only to a limited extent been able to determine the molecular processes in foraminifera and assign the reaction to environmental stress to the host or symbiont. The microscopically small foraminifera also made it difficult to investigate individual proteins, since the host and symbionts could not be separated. The methods of proteomics can now provide us with entirely new insights."

In the laboratory, the team of researchers exposed the foraminifera to different temperatures for one month and then dissected the proteins of the organisms together with their symbionts into shorter sections (peptides). The quantity and mass of these components were determined by mass spectrometry. Marleen Stuhr and her colleagues created a database of all known gene and peptide sequences of foraminifera and their symbionts, in this case diatoms. By comparing the detected peptide masses with the database, they were able to determine which proteins were present and from which of the two symbiotic partners they originated. The signal intensity – the amount of peaks in the mass spectra – was used to determine the amount of the respective proteins and their changes compared to non-stressed organisms. Finally, the functions of the proteins and their relative changes in quantity were used to reconstruct the biological and cellular processes.

As a continuation of her work, Stuhr plans to transfer the proteomics approach also to corals. This would provide information on the cellular adaptations that take place in the coral, i.e. the host, and the zooxanthellae, the symbionts, in the event of environmental changes. “This would help us to understand which factors make some organisms more resistant to certain stress influences. This is important to better manage coral reefs in terms of their resilience," said the scientist.

Publication:
Marleen Stuhr, Bernhard Blank-Landeshammer, Claire E. Reymond, Laxmikanth Kollipara, Albert Sickmann, Michal Kucera & Hildegard Westphal “Disentangling thermal stress responses in a reef-calcifier and its photosymbionts by shotgun proteomics” (2018, online first), Scientific Reports, DOI: 10.1038/s41598-018-21875-z

Weitere Informationen:

http://www.nature.com/articles/s41598-018-21875-z

Andrea Daschner | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

Further reports about: Proteomics Tropenforschung ZMT corals foraminifera proteins stress response symbiotic algae

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>