Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experts Can Discuss New FDA Produce Irradiation Rule

26.08.2008
Iowa State University faculty members Dennis Olson and Sam Beattie are available for interviews on the new FDA regulation that will allow fresh spinach and iceberg lettuce to be irradiated to kill illness-causing bacteria

The Food and Drug Administration’s new (Aug. 22) regulation that will allow irradiation pasteurization to be used on fresh spinach and iceberg lettuce to kill illness-causing bacteria is a step that two Iowa State University professors have long advocated.

Dennis Olson is a professor of animal science and directs Iowa State’s Linear Accelerator Facility, one of only two commercial-sized irradiation facilities for food research and demonstration on a U.S. university campus. He has researched food irradiation for more than a decade, and is an expert in food safety, particularly in the area of meat processing. (The FDA has allowed irradiation of red meat to control pathogens since 1997; in poultry since 1990).

Had the FDA rule been in place sooner, Olson is convinced that irradiation could have prevented some of the illnesses and three deaths that occurred during spinach and lettuce outbreaks in 2006.

“If we treat all of the lettuce and spinach, then there’s going to be a very rare instance of exposure to illness-causing microorganisms,” Olson said. “What’s sad is that the FDA, after a nearly nine-year review, selected only two products involved with the massive illnesses in 2006.” The FDA is still considering what other types of produce might be safely irradiated – for example, other leafy vegetables, tomatoes and peppers.

What’s significant about the new FDA rule is that it is the first time the federal government has allowed produce to be irradiated at levels sufficient to kill E. coli, salmonella and listeria – microorganisms that make people sick. The FDA has approved the use of irradiation to eliminate insects from wheat, potatoes, flour, spices, tea, fruits and vegetables since 1985, but it couldn’t be used to treat vegetative pathogens until now.

Cost and consumer acceptance are two obstacles that still stand in the way of large amounts of leafy greens being treated with irradiation.

“I suspect it will take awhile for the supply chain to get into place because of the limited number of irradiation facilities in place in the U.S.,” said Sam Beattie, Extension food safety specialist and an assistant professor of food science and human nutrition at Iowa State. “These facilities are relatively expensive to build, so you have to make sure you have adequate product flow and a market for that product.”

“It would have to be new construction, that’s for sure,” Olson added. “We wouldn’t expect any immediate adoption, and in fact industry won’t move forward unless they are sure there won’t be a backlash from consumer activists. The other issue is that there is a lot more product now being labeled organic, and you cannot irradiate products labeled organic.”

Both Beattie and Olson say American consumers are more willing to buy irradiated food than they may have been in the past. And the concern that zapping greens might leave them limp or cause them to taste differently is no longer an issue.

“There’s been a lot of research done on that, and basically, products that have treated with irradiation are as good or better after 14 days (typical travel time) than those that haven’t,” Olson said.

“We now know that in order to kill E. coli on this type of product, we can turn down the dosage level – the power of the beam – effectively, and lettuce and spinach remain just as crisp and wholesome as if you grew it yourself,” Beattie said.

He added, “The American consumer has shown willingness to purchase irradiated products such as strawberries and meats. Once consumers understand the food safety implications, their unfounded worries about the safety of the cold pasteurization process are eliminated, even though there are a lot of naysayers and anti-irradiation people giving inaccurate information.”

“The experience with ground beef is that consumers have not reacted negatively to the label,” Olson said. “The only negative reaction is to price. It costs more.”

The Iowa State professors are quick to point out that irradiation will not solve every instance of illness-causing bacteria on produce. Good agricultural practices, such as control of irrigation water and washing water, restriction of animals in produce fields, and personal hygiene of workers all affect the safety of fruits and vegetables. Further, safe food handling practices at home and in food service establishments also are important to ensure the safety of produce.

“In 2006, there were an estimated 50 billion servings of green, leafy salads served in this country, and there were approximately 1,200 people made ill,” Beattie said. “The odds of getting a food-borne illness from produce are already extremely low based upon the number of servings that we see. But what we have to recognize is that irradiation is one more tool we can use to ensure the safety of our products. This is especially important for at-risk populations – immune-compromised folks, pregnant women, children under the age of eight, and elderly. These people are at high risk for food-borne illness and it may be useful to feed them greens that have been irradiated, for that last margin of safety.”

Olson noted, “The real importance of this rule is that produce companies wouldn’t even look at the technology unless the government approved it. The new FDA rule makes them more inclined to take a fresh look at it.”

Dennis Olson, Animal Science, (515) 294-3697, dgolson@iastate.edu
Sam Beattie, Food Science and Human Nutrition, (515) 294-3357, beatties@iastate.edu

Dan Kuester | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>