Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Each tropical tree species specializes in getting the nutrients it needs

06.08.2018

Trees communicate via a "wood wide web" of roots and microbes in ways that enhance their growth and can reduce carbon dioxide in the atmosphere, mitigating climate change. But no one knows why so many tropical trees team up with bacteria to capture nitrogen from the air when they already grow in nitrogen-rich soils. A super-sized experiment at the Smithsonian Tropical Research Institute (STRI) to address this paradox showed that each species has its own unique nutrient-capture strategies, underscoring the importance of biodiversity for successful reforestation projects.

Tropical soils may be rich in nitrogen, but poor in phosphorus useable by plants. Many tropical tree species--usually in the bean (legume) family--have nodules on their roots formed by bacteria to capture nitrogen gas from the air and convert it into nitrogen useful for growth and carbon storage.


The 700-hectare Agua Salud experiment is divided into various catchments to better understand how land use and native timber species, store carbon, protect biodiversity and influence water flow into the Panama Canal.

Credit: Jorge Aleman, STRI

"People speculated that nitrogen-fixing species might channel extra nitrogen into making the phosphatase enzyme to capture phosphorus," said Jefferson Hall, director of the Smithsonian's Panama Canal watershed experiment--the Agua Salud Project. "But the evidence was limited."

Hall and colleagues realized that the landscape-scale experiment designed to find out how tropical trees store carbon, affect the water supply and conserve biodiversity, would be the perfect place ask this question, because, unlike in natural forests, there are enough individuals of each species to be able to generalize about how they behave. The team compared between six and 13 individual trees in each of four nitrogen-fixing and three non-nitrogen fixing species to produce phosphatase.

"I think about trees as individuals, as active decision makers, communicating and exchanging materials, choosing one strategy over another," said Sarah Batterman, first author of this study and associate professor and Natural Environment Research Council Independent research fellow at the University of Leeds, UK. "Overall, nitrogen-fixing trees produced more phosphatase, but non-nitrogen fixers did too, sometimes as much as nitrogen fixers, showing the diversity of strategies out there."

"We were hoping to find evidence for the nutrient trading hypothesis--that nitrogen fixers invest in nitrogen-rich phosphatase enzymes, which would resolve the paradox of why there are more nitrogen-fixing trees in these nitrogen-rich tropical forest soils," Batterman said. "But we didn't find any across-the-board support for this hypothesis. So then we considered the nutrient balance hypothesis--that trees adjust their nutrient-capture strategies to satisfy their needs--fixing more nitrogen in nitrogen-poor soils, making more phosphatase in phosphorus-poor soils. We didn't find across-the-board support for this, either."

"An important finding of this study is that high phosphatase activity is not restricted to nitrogen-fixing trees, but varies markedly among both legumes and non-legume species," said Ben Turner, co-author and director of the STRI Soils Laboratory.

"The exciting thing is that now we can apply what we learned about basic biological processes to reforestation efforts to maximize carbon capture and mitigate climate change," Batterman said. "Now we know which tree species may be better at accessing phosphorus, which may be better at getting nitrogen and, most importantly, that biodiversity is critical for reforestation projects."

The Agua Salud Project, a collaboration between STRI, the Panama Canal Authority and Panama's Ministry of the Environment (MiAmbiente). Native species plantations are part of the Smart Reforesation, BiodiversiTREE and TreeDivNet programs.

"We would especially like to thank supporters of the Agua Salud Project--ForestGEO, the Heising-Simons Foundation, HSBC bank, Stanley Motta, Small World Institute Fund, Smithsonian Institution's Competitive Grants for Science, Smithsonian Institution's Grand Challenges Grants, the Hoch family, the U.S. National Science Foundation, National University of Singapore, STRI and Yale-NUS college--because they believe in narrowing the distance between applied and theoretical research," said Hall. The lead author also received support from Princeton University, a STRI short-term fellowship program and a United Kingdom Natural Environment Research Council grant.

###

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical biodiversity and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website. Promo video.

Ref. Batterman, S.A, Hall, J.S., Turner, B.L, et al. 2018. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecology Letters. https://onlinelibrary.wiley.com/journal/14610248

Media Contact

Beth King
kingb@si.edu
202-633-4700 x28216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!
Further information:
http://dx.doi.org/10.1111/ele.13129

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>