Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA barcoding in danger of 'ringing up' wrong species

26.08.2008
DNA barcoding is a movement to catalog all life on earth by a simple standardized genetic tag, similar to stores labeling products with unique barcodes. The effort promises foolproof food inspection, improved border security, and better defenses against disease-causing insects, among many other applications.

But the approach as currently practiced churns out some results as inaccurately as a supermarket checker scanning an apple and ringing it up as an orange, according to a new Brigham Young University study. It was funded by the National Science Foundation and published in the prestigious Proceedings of the National Academy of Sciences.

With the International Barcode of Life project seeking $150 million to build on the 400,000 species that have been "barcoded" to date, this worthy goal warrants more careful execution, the BYU team says.

"To have that kind of data is hugely valuable, and the list of applications is endless and spans all of biology," said study co-author Keith Crandall, professor and chair of the Department of Biology at BYU. "But it all hinges on building an accurate database. Our study is a cautionary tale – if we're going to do it, let's do it right."

Proponents of DNA barcoding seek to establish a short genetic sequence as a way of identifying species in addition to traditional approaches based on external physical features. Their aim is to create a giant library full of these sequences. Scientists foresee a future handheld device like a supermarket scanner – a machine that would sequence a DNA marker from an organism, then compare it with the known encyclopedia of life and spit out the species' name.

This new approach requires only part of a sample. A feather left behind by a bird struck by an airliner, for example, would be enough to indicate its species and clue officials how to prevent future collisions. And organisms can be identified no matter what stage of life they are in – larvae of malaria-carrying mosquitoes contain the same DNA as the adult version of the insect targeted for eradication.

The portion of the gene selected as the universal marker by the barcoding movement is part of the genome found in an organism's mitochondria. But the BYU study showed the current techniques can mistakenly record instead the "broken" copy of the gene found in the nucleus of the organism's cells. This non-functional copy can be similar enough for the barcoding technique to capture, but different enough to call it a unique species, which would be a mistake. It is often difficult and time-consuming to identify this type contamination, which could lead to overestimating the number of species in a sample by more than several hundred percent, according to the BYU study.

BYU scientist Hojun Song, a post-doctoral researcher working in the laboratory of Michael Whiting, professor of biology, was preparing a paper based on his genetic analysis of grasshoppers. He noted that his sequencing turned up many of these problematic "numts" (nuclear mitochondrial pseudogenes), as scientists call these bits of inactive genetic code. When Crandall saw the unpublished paper, he recognized similar results from an analysis of cave crayfish conducted by his doctoral student, Jennifer Buhay, and recommended the two teams collaborate. The result is the PNAS paper, on which Song is the lead author and Buhay and Whiting are also co-authors, that recommends specific quality control procedures to ensure that correct genes are captured.

"I recognize that some who do DNA barcoding may be upset by this study, but that is the nature of science," Song said. "Building a genetic library of all life is a great goal, but we need to be careful to pay attention to the data that go into that library to make sure they are accurate."

Song and Crandall hope that when funding agencies hand out grants to pursue projects such as the International Barcode of Life that applicants will be required to use the procedures identified in the new paper to avoid a large portion of the numts that might otherwise be unfiltered.

Michael Smart | EurekAlert!
Further information:
http://www.byu.edu

Further reports about: Barcode Contamination DNA DNA Barcoding Genetic barcoding genetic sequence genetic tag

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>