Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defying Textbook Science, Study Finds New Role for Proteins

02.01.2015

Open any introductory biology textbook and one of the first things you’ll learn is that our DNA spells out the instructions for making proteins, tiny machines that do much of the work in our body’s cells.

Results from a study published on Jan. 2 in Science defy textbook science, showing for the first time that the building blocks of a protein, called amino acids, can be assembled without blueprints – DNA and an intermediate template called messenger RNA (mRNA). A team of researchers has observed a case in which another protein specifies which amino acids are added.


Janet Iwasa, Ph.D., University of Utah

Caught in the act: Rqc2 protein adds amino acids to a new protein A new finding goes against dogma, showing for the first time that the building blocks of a protein, called amino acids, can be assembled by another protein, and without genetic instructions. The Rqc2 protein (yellow) binds tRNAs (dark blue, teal) which add amino acids (bright spot in middle) to a partially made protein (green). The complex binds the ribosome (white).

“This surprising discovery reflects how incomplete our understanding of biology is,” says first author Peter Shen, Ph.D., a postdoctoral fellow in biochemistry at the University of Utah. “Nature is capable of more than we realize.”

To put the new finding into perspective, it might help to think of the cell as a well-run factory. Ribosomes are machines on a protein assembly line, linking together amino acids in an order specified by the genetic code. When something goes wrong, the ribosome can stall, and a quality control crew is summoned to the site. To clean up the mess, the ribosome is disassembled, the blueprint is discarded, and the partly made protein is recycled.

Yet this study reveals a surprising role for one member of the quality control team, a protein conserved from yeast to man named Rqc2. Before the incomplete protein is recycled, Rqc2 prompts the ribosomes to add just two amino acids (of 20 total) – alanine and threonine - over and over, and in any order. Think of an auto assembly line that keeps going despite having lost its instructions. It picks up what it can and slaps it on: horn-wheel-wheel-horn-wheel-wheel-wheel-wheel-horn.

“In this case, we have a protein, Rqc2, playing a role similar to that of mRNA,” says Adam Frost, M.D., Ph.D., assistant professor at University of California, San Francisco (UCSF) and adjunct professor of biochemistry at the University of Utah. He shares senior authorship with Jonathan Weissman, Ph.D., a Howard Hughes Medical Institute investigator at UCSF, and Onn Brandman, Ph.D., at Stanford University. “I love this story because it blurs the lines of what we thought proteins could do.”

Like a half-made car with extra horns and wheels tacked to one end, a truncated protein with an apparently random sequence of alanines and threonines looks strange, and probably doesn’t work normally. But the nonsensical sequence likely serves specific purposes. The code could signal that the partial protein must be destroyed, or it could be part of a test to see whether the ribosome is working properly. Evidence suggests that either or both of these processes could be faulty in neurodegenerative diseases such as Alzheimer’s, Amyotrophic lateral sclerosis (ALS), or Huntington’s.

“There are many interesting implications of this work and none of them would have been possible if we didn’t follow our curiosity,” says Brandman. “The primary driver of discovery has been exploring what you see, and that’s what we did. There will never be a substitute for that.”

The scientists first considered the unusual phenomenon when they saw evidence of it with their own eyes. They fine-tuned a technique called cryo-electron microscopy to flash freeze, and then visualize, the quality control machinery in action. “We caught Rqc2 in the act,” says Frost. “But the idea was so far-fetched. The onus was on us to prove it.”

It took extensive biochemical analysis to validate their hypothesis. New RNA sequencing techniques showed that the Rqc2/ribosome complex had the potential to add amino acids to stalled proteins because it also bound tRNAs, structures that bring amino acids to the protein assembly line. The specific tRNAs they saw only carry the amino acids alanine and threonine. The clincher came when they determined that the stalled proteins had extensive chains of alanines and threonines added to them.

“Our job now is to determine when and where this process happens, and what happens when it fails,” says Frost.

Shen, Frost, Brandman, and Weissman conducted the work in collaboration with colleagues at the University of Utah (Krishna Parsawar, James Cox), University of California at San Francisco (Xueming Li, Yifan Cheng, Matthew Larson), Stanford University (Joseph Park), and the University of Texas at Austin (Yidan Qin, Alan Lambowitz).

The research was supported by grants from the Searle Scholars program, the National Institutes of Health, the Howard Hughes Medical Institute, Stanford University, and the University of Utah.

Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Peter S. Shen, Joseph Park, Yidan Qin, Xueming Li, Krishna Parsawar, Matthew H. Larson, James Cox, Yifan Cheng, Alan M. Lambowitz, Jonathan S. Weissman, Onn Brandman, Adam Frost. Science, Jan. 2, 2015

Contact Information
Julie Kiefer
801-597-4258
jkiefer@neuro.utah.edu

Julie Kiefer | newswise

Further reports about: Health Sciences acids alanine amino amino acids mRNA proteins quality control ribosome specific

More articles from Life Sciences:

nachricht Something old, something new in the Ocean`s Blue
13.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>