Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Biological Bandage” Could Help Heal Wounds

28.03.2019

Scientists at the University of Bremen have now developed a three-dimensional protein structure in the laboratory that could help to heal wounds in the future. It is conceivable that one day this network could be produced as a kind of “biological bandage” from the blood of the person who will use it. The development is now patent pending.

Humans are vulnerable: one cut and they bleed. Fortunately, nature has its own solutions at the ready to treat minor injuries at the least: in order to close the wound quickly and enable the healing process, the protein fibrinogen, which is contained in blood plasma, is converted into fibrin and forms nanofibers. The scab develops.


Is the "biological bandage" coming soon? A team of researchers at the University of Bremen led by Dorothea Brüggemann and Karsten Stapelfeldt has now created a fibrinogen network

Kai Uwe Bohn / University of Bremen

The resulting tissue of microscopically fine fibers ensures that the wound closes and also supports healing. A team of biophysicists from the University of Bremen led by Professor Dorothea Brüggemann and doctoral student Karsten Stapelfeldt has now succeeded in creating such a biological fibrinogen network in the laboratory. The discovery promises new possibilities in wound care in the future.

Material from Our Own Blood

“Normally, when you have a wound, you can help yourself with bandages and compresses, which also represent a tissue, albeit a synthetic one,” explains Dorothea Brüggemann. “Our process enables biological wound dressings that could even be formed from a person’s own blood.”

Put simply, every human being could one day have their own “biological bandage,” which is ideally accepted by the body and has clear advantages in wound care, but also as a coating for implants.

A random discovery under the scanning electron microscope helped the Bremen research team. Doctoral student Karsten Stapelfeldt investigated the self-organization process that turns dissolved proteins into ultrafine fibers that then combine to form tissue. “Fibers appeared in places we didn’t expect them to,” he says. The research group was interested and focused their research on the formation of fibrinogen networks.

Natural Wound Dressing: Will We Soon Be Able to Get Scabs in a Tube?

“In the end, we succeeded in producing a layer several micrometers thick of the natural fibrinogen structure – something that you can actually take charge of. This can become the basis for a ‘natural’ wound dressing – in other words, scabs in a tube,” explains Karsten Stapelfeldt.

The “individual bandage,” which is made of our own organic material, was made possible by the Bremen discovery: “There’s never been anything like this before. Maybe one day people will have blood taken as infants in order to have such fibrinogen bandages ‘in stock’ for them,” wonders Dorothea Brüggemann.

“We see great potential for the future in this discovery.” This is why the team has filed a European patent application with the help of Bremen patent agency InnoWi GmbH.

The researchers in Dorothea Brüggemann’s working group still have a lot of work to do before the development comes close to being used in real life: “We will now test how cell cultures react to our fibrinogen networks, how they grow under certain conditions, and what the mechanical stability of the structures is like.”

The scientist heads the Emmy Noether research group for nanoBiomaterials, which is funded by the Deutsche Forschungsgemeinschaft (DFG – German Research Foundation), at the Institute for Biophysics at the university. The Emmy Noether Programme supports particularly qualified junior researchers.

The research results of the Bremen working group have now been published on the International Society for Biofabrication website: https://iopscience.iop.org/article/10.1088/1758-5090/ab0681.

Wissenschaftliche Ansprechpartner:

Professor Dorothea Brüggemann
Emmy Noether research group
Institute for Biophysics
Faculty of Physics/Electrical Engineering
University of Bremen
Tel.: +49 421 218-62286
E-mail: brueggemann@uni-bremen.de

Originalpublikation:

https://iopscience.iop.org/article/10.1088/1758-5090/ab0681

Kai Uwe Bohn | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bremen.de

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

The hidden structure of the periodic system

17.06.2019 | Life Sciences

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>