Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Biological Bandage” Could Help Heal Wounds

28.03.2019

Scientists at the University of Bremen have now developed a three-dimensional protein structure in the laboratory that could help to heal wounds in the future. It is conceivable that one day this network could be produced as a kind of “biological bandage” from the blood of the person who will use it. The development is now patent pending.

Humans are vulnerable: one cut and they bleed. Fortunately, nature has its own solutions at the ready to treat minor injuries at the least: in order to close the wound quickly and enable the healing process, the protein fibrinogen, which is contained in blood plasma, is converted into fibrin and forms nanofibers. The scab develops.


Is the "biological bandage" coming soon? A team of researchers at the University of Bremen led by Dorothea Brüggemann and Karsten Stapelfeldt has now created a fibrinogen network

Kai Uwe Bohn / University of Bremen

The resulting tissue of microscopically fine fibers ensures that the wound closes and also supports healing. A team of biophysicists from the University of Bremen led by Professor Dorothea Brüggemann and doctoral student Karsten Stapelfeldt has now succeeded in creating such a biological fibrinogen network in the laboratory. The discovery promises new possibilities in wound care in the future.

Material from Our Own Blood

“Normally, when you have a wound, you can help yourself with bandages and compresses, which also represent a tissue, albeit a synthetic one,” explains Dorothea Brüggemann. “Our process enables biological wound dressings that could even be formed from a person’s own blood.”

Put simply, every human being could one day have their own “biological bandage,” which is ideally accepted by the body and has clear advantages in wound care, but also as a coating for implants.

A random discovery under the scanning electron microscope helped the Bremen research team. Doctoral student Karsten Stapelfeldt investigated the self-organization process that turns dissolved proteins into ultrafine fibers that then combine to form tissue. “Fibers appeared in places we didn’t expect them to,” he says. The research group was interested and focused their research on the formation of fibrinogen networks.

Natural Wound Dressing: Will We Soon Be Able to Get Scabs in a Tube?

“In the end, we succeeded in producing a layer several micrometers thick of the natural fibrinogen structure – something that you can actually take charge of. This can become the basis for a ‘natural’ wound dressing – in other words, scabs in a tube,” explains Karsten Stapelfeldt.

The “individual bandage,” which is made of our own organic material, was made possible by the Bremen discovery: “There’s never been anything like this before. Maybe one day people will have blood taken as infants in order to have such fibrinogen bandages ‘in stock’ for them,” wonders Dorothea Brüggemann.

“We see great potential for the future in this discovery.” This is why the team has filed a European patent application with the help of Bremen patent agency InnoWi GmbH.

The researchers in Dorothea Brüggemann’s working group still have a lot of work to do before the development comes close to being used in real life: “We will now test how cell cultures react to our fibrinogen networks, how they grow under certain conditions, and what the mechanical stability of the structures is like.”

The scientist heads the Emmy Noether research group for nanoBiomaterials, which is funded by the Deutsche Forschungsgemeinschaft (DFG – German Research Foundation), at the Institute for Biophysics at the university. The Emmy Noether Programme supports particularly qualified junior researchers.

The research results of the Bremen working group have now been published on the International Society for Biofabrication website: https://iopscience.iop.org/article/10.1088/1758-5090/ab0681.

Wissenschaftliche Ansprechpartner:

Professor Dorothea Brüggemann
Emmy Noether research group
Institute for Biophysics
Faculty of Physics/Electrical Engineering
University of Bremen
Tel.: +49 421 218-62286
E-mail: brueggemann@uni-bremen.de

Originalpublikation:

https://iopscience.iop.org/article/10.1088/1758-5090/ab0681

Kai Uwe Bohn | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bremen.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Composite metal foam outperforms aluminum for use in aircraft wings

23.10.2019 | Materials Sciences

Researchers watch quantum knots untie

23.10.2019 | Physics and Astronomy

A technology to transform 2D planes into 3D soft and flexible structures

23.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>